Answer:
the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)
Explanation:
assuming ideal gas behaviour of the gas , the equation for ideal gas is
P*V=n*R*T
where
P = absolute pressure
V= volume
T= absolute temperature
n= number of moles of gas
R= ideal gas constant = 8.314 J/mol K
P=n*R*T/V
the work that is done by the gas is calculated through
W=∫pdV= ∫ (n*R*T/V) dV
for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:
W=∫pdV= ∫ (n*R*T/V) dV = n*R*T ∫(1/V) dV = n*R*T * ln (V₂/V₁)
since
P₁=n*R*T/V₁
P₂=n*R*T/V₂
dividing both equations
V₂/V₁ = P₁/P₂
W= n*R*T * ln (V₂/V₁) = n*R*T * ln (P₁/P₂ )
replacing values
P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa
since P₂ = 1 atm = 101325 Pa
W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J
Answer:
2 electrons will be needed by unbound oxygen in order to fill its 2nd shell.
Explanation:
The chemical reaction between magnesium and oxygen gives magnesium oxide as a product.The reaction is chemically represented as:

Magnesium is a metal of group-2 with 2 valence electrons.It has atomic number of 12.
![[Mg]=1s^22s^22p^63s^2](https://tex.z-dn.net/?f=%5BMg%5D%3D1s%5E22s%5E22p%5E63s%5E2)
In order to attain noble gas configuration it will loose two electrons.
![[Mg]^{2+}=1s^22s^22p^6](https://tex.z-dn.net/?f=%5BMg%5D%5E%7B2%2B%7D%3D1s%5E22s%5E22p%5E6)
...[1]
Oxygen is a non metal of group-16 with 6 valence electrons..It has atomic number of 8.
![[O]=1s^22s^22p^4](https://tex.z-dn.net/?f=%5BO%5D%3D1s%5E22s%5E22p%5E4)
In order to attain noble gas configuration it will gain two electrons.
![[O]^{2-}=1s^22s^22p^6](https://tex.z-dn.net/?f=%5BO%5D%5E%7B2-%7D%3D1s%5E22s%5E22p%5E6)
..[2]
2 electrons will be needed by unbound oxygen in order to fill its 2nd shell.
Answer:
The three characteristics of a good scientist are his curiosity, creativity and problem-solving skills.
Explanation:
Answer: Kinetic Molecular Theory claims that gas particles are in continuous motion and completely demonstrate elastic collisions. Kinetic Molecular Theory can be used to describe the rules of both Charles and Boyle. A series of gas particles only has an average kinetic energy that is directly proportional to absolute temperature.