This question is Incomplete
Complete Question
Researchers recorded the speed of ants on trails in their natural environments. The ants studied, Leptogenys processionalis, all have the same body size in their adult phase, which made it easy to measure speeds in units of body lengths per second (bl/s). The researchers found that, when traffic is light and not congested, ant speeds vary roughly Normally, with mean 6.20 bl/s and standard deviation 1.58 bl/s. (a) What is the probability that an ant's speed in light traffic is faster than 5 bl/s? You may find Table B useful. (Enter your answer rounded to four decimal places.)
Answer:
0.7762
Step-by-step explanation:
We solve using z score formula
z = (x-μ)/σ, where
x is the raw score
μ is the population mean
σ is the population standard deviation.
Population mean = 6.20 bl/s
Standard deviation = 1.58 bl/s.
x = 5 bl/s
z = 5 - 6.20/1.58
z = -0.75949
The probability that an ant's speed in light traffic is faster than 5 bl/s is P( x > 5)
Probability value from Z-Table:
P(x<5) = 0.22378
P(x>5) = 1 - P(x<5)
= 1 - 22378
= 0.77622
Approximately to 4 decimal places = 0.7762
The probability that an ant's speed in light traffic is faster than 5 bl/s is 0.7762
..........solve it like an equation
The key with these problems is to find which function has the closest y-intercept to the graph, and then try to figure out which one best approximates the slope.
Here are our options:
<span>A. y = x + 4
B. y = 4x + 9
C. y = x + 18
D. y = 3x + 22
Which has the closest approximation of the y-intercept?
The y-intercept is not directly given, but we can assume it is less than 10.
That leaves us with A and B.
Which has the closest approximation of the slope?
The graph, on average, seems to move up about 60 and over about 15.
Slope = rise/run = 60/15 = 4. Although the slope isn't exactly 4, it's much closer to 4 than 1, which is slope for option A.
Therefore, the answer is
B) y= 4x + 9
</span>
Answer:
4a
Step-by-step explanation:
rjdjejeeeoendeieierirrieiririririritififir
Answer:
Step-by-step explanation:
Use synthetic division:
The coefficients of 2x^3 - 1 are {2, 0, 0, -1}. Setting up synthetic division, we get:
1 / 2 0 0 -1
2 2 2
---------------------------
2 2 2 1
Note that the remainder is 1. The same result would be obtained through long division.
The quotient is 2x^2 + 2x + 2 with a remainder of 1.