<u>Given</u>:
Given that the graph OACE.
The coordinates of the vertices OACE are O(0,0), A(2m, 2n), C(2p, 2r) and E(2t, 0)
We need to determine the midpoint of EC.
<u>Midpoint of EC:</u>
The midpoint of EC can be determined using the formula,
![Midpoint=(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})](https://tex.z-dn.net/?f=Midpoint%3D%28%5Cfrac%7Bx_1%2Bx_2%7D%7B2%7D%2C%20%5Cfrac%7By_1%2By_2%7D%7B2%7D%29)
Substituting the coordinates E(2t,0) and C(2p, 2r), we get;
![Midpoint=(\frac{2t+2p}{2},\frac{0+2r}{2})](https://tex.z-dn.net/?f=Midpoint%3D%28%5Cfrac%7B2t%2B2p%7D%7B2%7D%2C%5Cfrac%7B0%2B2r%7D%7B2%7D%29)
Simplifying, we get;
![Midpoint=(\frac{2(t+p)}{2},\frac{2r}{2})](https://tex.z-dn.net/?f=Midpoint%3D%28%5Cfrac%7B2%28t%2Bp%29%7D%7B2%7D%2C%5Cfrac%7B2r%7D%7B2%7D%29)
Dividing, we get;
![Midpoint=(t+p,r)](https://tex.z-dn.net/?f=Midpoint%3D%28t%2Bp%2Cr%29)
Thus, the midpoint of EC is (t + p, r)
Hence, Option A is the correct answer.