![\dfrac{\sqrt[3]{x+h}-\sqrt[3]x}h\times\dfrac{\sqrt[3]{(x+h)^2}+\sqrt[3]{x(x+h)}+\sqrt[3]{x^2}}{\sqrt[3]{(x+h)^2}+\sqrt[3]{x(x+h)}+\sqrt[3]{x^2}}=\dfrac{(\sqrt[3]{x+h})^3-(\sqrt[3]x)^3}\cdots](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7Bx%2Bh%7D-%5Csqrt%5B3%5Dx%7Dh%5Ctimes%5Cdfrac%7B%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7Bx%28x%2Bh%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7Bx%28x%2Bh%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%3D%5Cdfrac%7B%28%5Csqrt%5B3%5D%7Bx%2Bh%7D%29%5E3-%28%5Csqrt%5B3%5Dx%29%5E3%7D%5Ccdots)

The

s then cancel, leaving you with the
![\cdots=\sqrt[3]{(x+h)^2}+\sqrt[3]{x(x+h)}+\sqrt[3]{x^2}](https://tex.z-dn.net/?f=%5Ccdots%3D%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7Bx%28x%2Bh%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D)
term.
If it's not clear what I did above, consider the substitution
![a=\sqrt[3]{x+h}](https://tex.z-dn.net/?f=a%3D%5Csqrt%5B3%5D%7Bx%2Bh%7D)
and
![b=\sqrt[3]x](https://tex.z-dn.net/?f=b%3D%5Csqrt%5B3%5Dx)
. Then

<span>d. It does, the points shown on the line would be part of y = −2x.
is the answer let me know if this helped</span>
Answer:
The speed of the bus is 74.242 kilometers per hour.
Step-by-step explanation:
Let suppose that bus runs at constant speed and that speed is measured in kilometers per hour. Then, the speed of the bus (
), in kiometers per hour, is determined by following kinematic expression:
(1)
Where:
- Travelled distance, in kilometers.
- Time, in hours.
If we know that
and
, then the speed of the bus is:


The speed of the bus is 74.242 kilometers per hour.
Answer:
640
Step-by-step explanation:
you just divide
Hey!
To solve this problem, we must subtract one over three from both sides of the equation. This will give us x on its own.
<em>Original Equation :</em>

<em>New Equation {Added Subtract

to Both Sides} :</em>

<em>Solution {New Equation Solved} :</em>

<em>So, this means that in the equation provided</em>,
.Hope this helps!
- Lindsey Frazier ♥