A student can take three subjects in 40 ways.
<u>SOLUTION:</u>
Given that, there are 4 different math courses, 5 different science courses, and 2 different history courses.
A student must take one of each, how many different ways can this be done?
Now, number ways to take math course = 4
Number of ways to take science course = 5
Number of ways to take history course = 2
So, now, total possible ways = product of possible ways for each course = 4 x 5 x 2 = 40 ways.
Hence, a student can take three subjects in 40 ways.
Answer:
Not necessarily. There are many ways to write a basic equation with a negative answer. For example, -3-4 = -7. Here 4 is a positive number but because you subtract 4 to 3 or take away 4 from 3 being a negative number and so you get a negative answer. Another example is 6+(-9). There are a couple of ways you can resolve this. My method is to subtract 9 from 6 which gives you 3 and simply add a negative sign.
Let me know if you'd like more examples. Hope this helps!! Sorry if it is confusing I can explain you in a more simpler way if you'd like.
Step-by-step explanation:
Answer:
|x + 12|
Step-by-step explanation:
The question I took form you I assume looks like this...
|x - (-12)|
Therefore, if we simplify this, the answer is |x + 12|
This is the answer because you would multiply -1 by -12
150 x 5= 750
20 x 5= 100 ... so they should expect 100 cellphones to be defective