<span>3.2 grams
The first thing to do is calculate how many half lives have expired. So take the time of 72 seconds and divide by the length of a half life which is 38 seconds. So
72 / 38 = 1.894736842
So we're over 1 half life, but not quite 2 half lives. So you'll have something less than 12/2 = 6 grams, but more than 12/4 = 3 grams.
The exact answer is done by dividing 12 by 2 raised to the power of 1.8947. So let's calculate 2^1.8947 power
= 12 g / (e ^ ln(2)*1.8947)
= 12 g / (e ^ 0.693147181 * 1.8947)
= 12 g / (e ^ 1.313305964)
= 12 g / 3.718446464
= 3.227154167 g
So rounded to 2 significant figures gives 3.2 grams.</span>
Answer:
The work done against gravity is 78.4 J
Explanation:
The work is calculated by multiplying the force by the distance that the
object moves
W = F × d, where W is the work , F is the force and d is the distance
The SI unit of work is the joule (J)
We need to find the work done against gravity when lowering a
16 kg box 0.50 m
→ F = mg
→ m = 16 kg, and g = 9.8 m/s²
Substitute these value in the rule
→ F = 16 × 9.8 = 156.8 N
→ W = F × d
→ F = 156.8 N and d = 0.50
Substitute these values in the rule
→ W = 78.4 J
<em>The work done against gravity is 78.4 J</em>
Answer:
Initial velocity, U = 28.73m/s
Explanation:
Given the following data;
Final velocity, V = 35m/s
Acceleration, a = 5m/s²
Distance, S = 40m
To find the initial velocity (U), we would use the third equation of motion.
V² = U² + 2aS
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
35² = U + 2*5*40
1225 = U² + 400
U² = 1225 - 400
U² = 825
Taking the square root of both sides, we have;
Initial velocity, U = 28.73m/s
I believe it is water that is the medium for beach erosion
Trees are important because oxygen