Considering the unknown resistence as R and using the Ohm's First Law, we have:
The equivalent resistence is given by the resistor series with the lamp resistence.

If you notice any mistake in my english, please let me know, because i am not native.
Answer:
The direction is due south
Explanation:
From the question we are told that
The energy of the electron is 
The earths magnetic field is 
Generally the force on the electron is perpendicular to the velocity of the elecrton and the magnetic field and this is mathematically reresented as

On the first uploaded image is an illustration of the movement of the electron
Looking at the diagram we can see that in terms of direction the magnetic force is


generally i cross k = -j
so the equation above becomes


This show that the direction is towards the south
Answer: 
Explanation:

where;
= final velocity = 0
= initial velocity = 60 km/h = 16.67 m/s
= acceleration
= distance
First all of, because acceleration is given in m/s and not km/h, you need to convert 60km/h to m/s. Our conversion factors here are 1km = 1000m and 1h = 3600s

Solve for a;

Begin by subtracting 

Divide by 2d

Now plug in your values:



If you're wondering why I calculated acceleration first is because in order to find force, we need 2 things: mass and acceleration.

m = mass = 900kg
a = acceleration = -2.78m/s

It's negative because the force has to be applied in the opposite direction that the car is moving.
Answer:
27 m
Explanation:
Given:
v₀ = 6 m/s
a = 2 m/s²
t = 3 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (6 m/s) (3 s) + ½ (2 m/s²) (3 s)²
Δx = 27 m