A tissue donor is what you're probably looking for. :)
Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>
Answer:

Explanation:
Given
,
,
,
The tension of the spring is



The force in the spring is equal to centripetal force so


But Fc is also
Fc=KxΔr

Replacing



total distance is

The suspended ash made for some some spectacular sunsets! Sulfuric acid was spread worldwide, increasing acidity of rain. Ash deflected energy from the sun, causing a slight drop on global temps for a few years.
Answer:
An example of kinetic energy is a <u><em>car coming to a stop</em></u>
Explanation:
Kinetic energy is the energy that a body or system possesses due to its movement. In physics this energy is defined as the amount of work necessary to accelerate a body of a certain mass and in rest position, until reaching a certain speed. This energy obtained will remain unchanged as long as this body does not vary its speed. That is, kinetic energy measures how many changes an object that is moving can cause.
<u><em>An example of kinetic energy is a car coming to a stop</em></u>. If the car is moving and comes to a stop, there is a change in speed, therefore in movement, eventually producing a change in kinetic energy. This energy depends on the mass of the body, in this case the car, and the speed. As the speed decreases, the kinetic energy will decrease.