Answer:
1/3
Step-by-step explanation:
When working with balanced expressions (stuff on both sides of the equal sign), "what you do to one side, you do to the other", which keeps it balanced.
The first thing we notice is the exponent 1/4, which is one both sides, so we can get rid of it on both sides by using the <u>reverse operation</u>.
The reverse of exponents is <u>square root</u>.
![(4x + 10)^{\frac{1}{4}} = (9 + 7x)^{\frac{1}{4}}\\\sqrt[\frac{1}{4}]{(4x + 10)^{\frac{1}{4}}} = \sqrt[\frac{1}{4}]{(9 + 7x)^{\frac{1}{4}}}\\\\4x + 10 = 9 + 7x](https://tex.z-dn.net/?f=%284x%20%2B%2010%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%3D%20%289%20%2B%207x%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5Csqrt%5B%5Cfrac%7B1%7D%7B4%7D%5D%7B%284x%20%2B%2010%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%20%3D%20%5Csqrt%5B%5Cfrac%7B1%7D%7B4%7D%5D%7B%289%20%2B%207x%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%5C%5C%5C%5C4x%20%2B%2010%20%3D%209%20%2B%207x)
Isolate x to solve. Separate the variables and non-variables.
4x + 10 = 9 + 7x
4x - 4x + 10 = 9 + 7x - 4x Subtract 4x from both sides
10 = 9 + 3x
10 - 9 = 9 - 9 + 3x Subtract 9 from both sides
1 = 3x Divide both sides by 3 to isolate x
x = 1/3 Answer
Coefficients are the numbers in from with the variable, the constant is just a number and the degree is the exponent.
Answer:

Step-by-step explanation:
step 1
Find the slope
The formula to calculate the slope between two points is equal to

we have
the points (−1,12) and (1,2)
substitute



step 2
we know that
The equation of the line in slope intercept form is equl to

where
m is the slope
b is the y-intercept
we have


substitute in the linear equation and solve for b


therefore

Answer:
B
Step-by-step explanation:
The best - well, only way- is to check a few points.
Namely -1 (unless your eyesight is really poor!), 0, 1, 2, and 3.

Now you can mark all these points in each graph (well, you could if they were on paper and not on a screen) and see which one of the lines passes through all of them. Spoiler alert, it's the B graph.
A represents
, B is the one you want, C is
and D looks like 