-- It takes 10 workers 3 days to build 1 house.
so
-- It takes 10 workers 1 day to build 1/3 of a house.
so
-- It takes 1 worker 1 day to build 1/30 of a house.
You got 15 workers and you need 4 houses ?
Well, as we just calculated . . .
-- It takes 1 worker 1 day to build 1/30 of a house.
so
-- It takes 15 workers 1 day to build 15/30 = 1/2 of a house.
so
-- It takes 15 workers 2 days to build 1 whole house.
so
-- It takes 15 workers 8 days to build 4 houses.
Answer: Option A. 65 m^2
Solution:
Sides: a=10 m, b=14 m, c=20 m
Area: A=?
A=sqrt [p(p-a)(p-b)(p-c) ]
Semi-perimeter: p=(a+b+c)/2
p=(10 m+14 m+20 m)/2
p=(44 m)/2
p=22 m
A=sqrt [ (22 m)(22 m-10 m)(22 m-14 m)(22 m-20 m)]
A=sqrt [ (22 m)(12 m)(8 m)(2 m) ]
A=sqrt [ 4,224 m^4 ]
A=64.99230723 m^2
A=65 m^2
3 x^{2} + 8x +(-4) = 0
x = <u>-b + √ b² - 4ac</u>
2a
x = <u>-8 + √ 8² - 4(3)(-4)</u>
2(3)
x = <u>-8 + √64 - 48 </u>
6
x = -<u>8 + √16
</u> 6<u>
</u>x = -<u>8 + 4 </u> x = <u>-8 - 4</u>
6 6<u>
</u>x = <u>-4 </u> x = <u>-12</u>
6 6
x =<u> -2 </u> x = -2<u>
</u> 3 <u>
</u>
Answer:
b
Step-by-step explanation: