The factorized form of the equation
is ![\boxed{\left( {{x^4}{y^6} + 1} \right)\left( {{x^8}{y^{12}} - {x^4}{y^6} + 1} \right)}.](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cleft%28%20%7B%7Bx%5E4%7D%7By%5E6%7D%20%2B%201%7D%20%5Cright%29%5Cleft%28%20%7B%7Bx%5E8%7D%7By%5E%7B12%7D%7D%20-%20%7Bx%5E4%7D%7By%5E6%7D%20%2B%201%7D%20%5Cright%29%7D.)
Further Explanation:
The rules of exponents are as follows,
1.![\boxed{\left( {{x^m}} \right) \times \left( {{x^n}} \right) = {x^{m + n}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cleft%28%20%7B%7Bx%5Em%7D%7D%20%5Cright%29%20%5Ctimes%20%5Cleft%28%20%7B%7Bx%5En%7D%7D%20%5Cright%29%20%3D%20%7Bx%5E%7Bm%20%2B%20n%7D%7D%7D)
2. ![\boxed{\frac{{{x^m}}}{{{x^n}}} = {x^{m - n}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cfrac%7B%7B%7Bx%5Em%7D%7D%7D%7B%7B%7Bx%5En%7D%7D%7D%20%3D%20%7Bx%5E%7Bm%20-%20n%7D%7D%7D)
3. ![\boxed{{{\left( {{x^a}} \right)}^b} = {x^{a \times b}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%7B%7B%5Cleft%28%20%7B%7Bx%5Ea%7D%7D%20%5Cright%29%7D%5Eb%7D%20%3D%20%7Bx%5E%7Ba%20%5Ctimes%20b%7D%7D%7D)
4. ![\boxed{{x^{\frac{m}{n}}} = \sqrt[n]{{{x^m}}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%7Bx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%7D%20%3D%20%5Csqrt%5Bn%5D%7B%7B%7Bx%5Em%7D%7D%7D%7D)
Given:
The polynomial function is ![{x^{12}}{y^{18}} + 1.](https://tex.z-dn.net/?f=%7Bx%5E%7B12%7D%7D%7By%5E%7B18%7D%7D%20%2B%201.)
Calculation:
The cubic formula can be expressed as follows,
![\boxed{{a^3} + {b^3}=\left( {a + b} \right)\left( {{a^2} - ab + {b^2}}\right)}](https://tex.z-dn.net/?f=%5Cboxed%7B%7Ba%5E3%7D%20%2B%20%7Bb%5E3%7D%3D%5Cleft%28%20%7Ba%20%2B%20b%7D%20%5Cright%29%5Cleft%28%20%7B%7Ba%5E2%7D%20-%20ab%20%2B%20%7Bb%5E2%7D%7D%5Cright%29%7D)
The given polynomial function is ![{x^{12}}{y^{18}} + 1.](https://tex.z-dn.net/?f=%7Bx%5E%7B12%7D%7D%7By%5E%7B18%7D%7D%20%2B%201.)
![\begin{aligned}P\left( x \right) &= {x^{12}}{y^{18}} + 1\\&= {\left( {{x^4}{y^6}} \right)^3} + {\left( 1 \right)^3}\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7DP%5Cleft%28%20x%20%5Cright%29%20%26%3D%20%7Bx%5E%7B12%7D%7D%7By%5E%7B18%7D%7D%20%2B%201%5C%5C%26%3D%20%7B%5Cleft%28%20%7B%7Bx%5E4%7D%7By%5E6%7D%7D%20%5Cright%29%5E3%7D%20%2B%20%7B%5Cleft%28%201%20%5Cright%29%5E3%7D%5C%5C%5Cend%7Baligned%7D)
Use the identity
in above expression.
![\begin{aligned}P\left( x \right)&= \left( {{x^4}{y^6} + 1}\right)\left[ {{{\left( {{x^4}{y^6}} \right)}^2} - {x^4}{y^6} \times 1 + {1^2}} \right]\\&= \left( {{x^4}{y^6} + 1} \right)\left( {{x^8}{y^{12}} - {x^4}{y^6} + 1} \right) \\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7DP%5Cleft%28%20x%20%5Cright%29%26%3D%20%5Cleft%28%20%7B%7Bx%5E4%7D%7By%5E6%7D%20%2B%201%7D%5Cright%29%5Cleft%5B%20%7B%7B%7B%5Cleft%28%20%7B%7Bx%5E4%7D%7By%5E6%7D%7D%20%5Cright%29%7D%5E2%7D%20-%20%7Bx%5E4%7D%7By%5E6%7D%20%5Ctimes%201%20%2B%20%7B1%5E2%7D%7D%20%5Cright%5D%5C%5C%26%3D%20%5Cleft%28%20%7B%7Bx%5E4%7D%7By%5E6%7D%20%2B%201%7D%20%5Cright%29%5Cleft%28%20%7B%7Bx%5E8%7D%7By%5E%7B12%7D%7D%20-%20%7Bx%5E4%7D%7By%5E6%7D%20%2B%201%7D%20%5Cright%29%20%5C%5C%5Cend%7Baligned%7D)
The factorized form of the equation
is ![\boxed{\left({{x^4}{y^6} + 1}\right)\left({{x^8}{y^{12}} - {x^4}{y^6} + 1}\right)}.](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cleft%28%7B%7Bx%5E4%7D%7By%5E6%7D%20%2B%201%7D%5Cright%29%5Cleft%28%7B%7Bx%5E8%7D%7By%5E%7B12%7D%7D%20-%20%7Bx%5E4%7D%7By%5E6%7D%20%2B%201%7D%5Cright%29%7D.)
Learn more:
1. Learn more about unit conversion brainly.com/question/4837736
2. Learn more about non-collinear brainly.com/question/4165000
3. Learn more aboutbinomial and trinomial brainly.com/question/1394854
Answer details:
Grade: High School
Subject: Mathematics
Chapter: Exponents and Powers
Keywords: Solution, factorized form,
, exponents, power, equation, power rule, exponent rule.