Answer:
(0.0263%, 0.0370%)
Step-by-step explanation:
Sample size = n = 420,100
Number of users who developed cancer = x = 133
Proportion of users who developed cancer = p = ![\frac{133}{420100}](https://tex.z-dn.net/?f=%5Cfrac%7B133%7D%7B420100%7D)
Proportion of users who didnot develop cancer = q = 1 - p = ![1-\frac{133}{420100}=\frac{419967}{420100}](https://tex.z-dn.net/?f=1-%5Cfrac%7B133%7D%7B420100%7D%3D%5Cfrac%7B419967%7D%7B420100%7D)
Confidence Level = 95%
Z value associated with this confidence level = z = 1.96
The formula to calculate the confidence interval is:
![\text{Lower Bound} = p-z\sqrt{\frac{pq}{n}}\\\\ \text{Upper Bound} = p+z\sqrt{\frac{pq}{n}}](https://tex.z-dn.net/?f=%5Ctext%7BLower%20Bound%7D%20%3D%20p-z%5Csqrt%7B%5Cfrac%7Bpq%7D%7Bn%7D%7D%5C%5C%5C%5C%20%5Ctext%7BUpper%20Bound%7D%20%3D%20p%2Bz%5Csqrt%7B%5Cfrac%7Bpq%7D%7Bn%7D%7D)
Using the values in above expressions, we get:
![\text{Lower Bound}=\frac{133}{420100}-1.96\sqrt{\frac{\frac{133}{420100}\times\frac{419667}{420100}}{420100}}\\\\\text{Lower Bound}=0.000263](https://tex.z-dn.net/?f=%5Ctext%7BLower%20Bound%7D%3D%5Cfrac%7B133%7D%7B420100%7D-1.96%5Csqrt%7B%5Cfrac%7B%5Cfrac%7B133%7D%7B420100%7D%5Ctimes%5Cfrac%7B419667%7D%7B420100%7D%7D%7B420100%7D%7D%5C%5C%5C%5C%5Ctext%7BLower%20Bound%7D%3D0.000263)
and
![\text{Upper Bound}=\frac{133}{420100}+1.96\sqrt{\frac{\frac{133}{420100}\times\frac{419667}{420100}}{420100}} \\\\ \text{Upper Bound}=0.000370](https://tex.z-dn.net/?f=%5Ctext%7BUpper%20Bound%7D%3D%5Cfrac%7B133%7D%7B420100%7D%2B1.96%5Csqrt%7B%5Cfrac%7B%5Cfrac%7B133%7D%7B420100%7D%5Ctimes%5Cfrac%7B419667%7D%7B420100%7D%7D%7B420100%7D%7D%20%5C%5C%5C%5C%20%5Ctext%7BUpper%20Bound%7D%3D0.000370)
Thus, the bounds of the confidence interval are:
(0.000263, 0.000370)
This can be expressed in percentages as:
(0.0263%, 0.0370%)
Therefore, a 95% confidence interval estimate of the percentage of cell phone users who develop cancer of the brain or nervous system is (0.0263%, 0.0370%)