Answer:

Step-by-step explanation:

^4+(x^2-4)^5[\frac{d}{dx}(3x+4)^4]](https://tex.z-dn.net/?f=y%27%3D%5B%5Cfrac%7Bd%7D%7Bdx%7D%28x%5E2-4%29%5E5%5D%283x%2B4%29%5E4%2B%28x%5E2-4%29%5E5%5B%5Cfrac%7Bd%7D%7Bdx%7D%283x%2B4%29%5E4%5D)



Area of the shaded region=area of the greater rectangle- area of the inner rectangle.
Area of a rectangle=length x width.
Area of the greater rectangle=(8x-1)(6x)
area of the inner rectangle=(5x+3)(2x)
Area of the shaded region=(8x-1)(6x)-(5x+3)(2x)
=48x²-6x-(10x²+6x)
=48x²-6x-10x²-6x
=38x²-12x
Answer: the area of the shaded region would be: 38x²-12x
Answer:
p(7,-11)
that is the answer of the coordinates
Answer:
Solution : 
Step-by-step explanation:
![-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right]](https://tex.z-dn.net/?f=-3%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%7D%7B4%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%7D%7B4%7D%5Cright%29%5Cright%5D%5C%3A%5Cdiv%20%5C%3A2%5Csqrt%7B2%7D%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%5Cright%5D)
Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

=
÷ 
=
÷ 
=
÷
=
÷
= 
As you can see your solution is the last option.