The pairs of angles<span> on one side of the transversal but inside the two lines are called </span>сonsecutive interior angles<span>.
</span>∠6 and ∠1
∠7 and ∠4
<span>
С and D options.</span>
Answer:
a. subtract 7 from 10
Step-by-step explanation:
parenthesis goes before everything in this equation
Answer:
5 1/3
Step-by-step explanation:
I caculated 2/3 times 8
Answer:
3
Step-by-step explanation:
(40/5)-7+2
PEMDAS says parentheses first, so divide inside the parentheses
(8)-7+2
Then add and subtract from left to right
1 +2
3
Angle 1 is congruent to angles 3, 5, and/or 7
Angle 2 is congruent to angles 4, 6, and/or 8
Angle 5 is congruent to angles 7, 3 and/or 1
Angle 6 is congruent to angles 8, 4, and/or 2
Any of these answers could work for the blanks.
Angles 1 and 3, 2 and 4, 5 and 7, and angles 6 and 8 are congruent because they are vertical angles. They have the same vertex. Not all of these are congruent to each other if this doesn’t make sense. It’s only 1 is congruent to 3, 2 congruent to 4, etc.
Then you have your corresponding angles. These are ones like angles 2 and 6, then 1 and 5. You can also have 8 and 4, or 7 and 3 as corresponding angles
Transversal angles are different. This would be like angles 3 and 4, or 1 and 2. They are not always congruent. The only time they will be congruent is if they are both 90°. Transversal angles are essentially supplementary angles on the transversal line (the line that intersects through the set of parallel lines)