Answer:
4.662 slugs
Explanation:
Your mass on the moon should always be the same as any planet you are on (due to law of mass conservation), only your weight be different as gravitational acceleration is different on each planet.
If you weight 150 lbf on Earth, and gravitational acceleration on Earth is 32.174 ft/s2. The your mass on Earth is
m = W / g = 150 / 32.174 = 4.662 slugs
which is also your mass on the moon.
Answers:
a)The balloon is 68 m away of the radar station
b) The direction of the balloon is towards the radar station
Explanation:
We can solve this problem with the Doppler shift equation:
(1)
Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the velocity of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which is the balloon
Isolating
:
(2)
(3)
(4) This is the velocity of the balloon, note the negative sign indicates the direction of motion of the balloon: It is moving towards the radar station.
Now that we have the velocity of the balloon (hence its speed, the positive value) and the time (
) given as data, we can find the distance:
(5)
(6)
Finally:
(8) This is the distance of the balloon from the radar station
C. Forces are always in pairs
Answer:
layers of cotton lining the interior
Explanation:
Answer:
a) the magnitude of the force is
F= Q(
) and where k = 1/4πε₀
F = Qqs/4πε₀r³
b) the magnitude of the torque on the dipole
τ = Qqs/4πε₀r²
Explanation:
from coulomb's law
E = 
where k = 1/4πε₀
the expression of the electric field due to dipole at a distance r is
E(r) =
, where p = q × s
E(r) =
where r>>s
a) find the magnitude of force due to the dipole
F=QE
F= Q(
)
where k = 1/4πε₀
F = Qqs/4πε₀r³
b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces
τ = F sinθ × s
θ = 90°
note: sin90° = 1
τ = F × r
recall F = Qqs/4πε₀r³
∴ τ = (Qqs/4πε₀r³) × r
τ = Qqs/4πε₀r²