I believe it would be Tendonitis
Answer:
5572.8 N
Explanation:
Applying,
F = ma.............. Equation 1
Where F = Force, m = mass of the car, a = acceleration.
We can find a by applying,
v² = u²+2as............. Equation 2
Where v = final velocity, u = initial velocity, a = acceleration, = distance.
From the question,
Given: v = 0 m/s (come to rest), u = 1.7 m/s, s = 0.210 m
Substitute these value into equation 2
0² = 1.7²+2×0.21×a
a = -1.7²/(2×0.21)
a = -2.89/0.42
a = -6.88 m/s²
Also given: m = 810 kg
Substitute these value into equation 1
F = 810(-6.88)
F = -5572.8 N
Hence the force on the bumber is 5572.8 N
We can find the y-component of the resultant force by adding the y-components of the two 20N forces.
For a force of magnitude F and lying at an angle off the x-axis θ, the y-component of the force is given by:
Fsin(θ)
The magnitude of the two forces is 20N, and they lie at 30° and 60°, so the sum of their y-components, and therefore the y-component of the resultant force, is:
20sin(30°)+20sin(60°)
= 27.3N
Answer:
Diagram A will reach the top first.
Explanation:
If it is going straight, it will go slower. The higher the movement speed the faster it is. Hope this helps!