Answer:
The question is missing something it doesn't say how fast down its going and doesn't show the figure sorry for wasting an answer
Explanation:
B. More mass results in less acceleration.
Answer:
Mass and velocity.
Explanation:
Kinetic energy <u>is the energy that an object has due to its movement</u>, mathematically it is represented as follows:

where
is the mass of the object, and
is its velocity at a given point in time.
So we can see that to find the kinetic energy just before the ball hits the gound, we need the quantities:
- mass of the ball
- velocity of the ball before it hits the ground
With the knowledge of these two quantities the kinetic energy of the ball before touching the gound can be determined.
When sphere A and B are brought in contact and separated, charge on each sphere becomes [2x10^-6 + (-4x10^-6)]/ 2 = -1x10^-6 C.
That is, charge is equally separated and is the average of charges on both spheres. The reason behind equal charge on both spheres after separation is, when they are kept in contact, their potential difference becomes same.
Answer:
The distance between the two objects must be squared.
Explanation:
Gravitational force always act between two objects that have mass. The gravitational force is a weak force and attractive in nature.
The force of pull depends on the masses of the two objects and the distance between them.
The formula to calculate gravitational force between two objects having masses 'm' and 'M' and separated by a distance 'd' is given as:

Where, 'G' is called the universal gravitational constant and its value is equal to
.
Now, from the above formula, it is clear that, the force of gravitation is inversely proportional to the square of the distance between the two objects.
Thus, the quantity that must be squared in the equation of gravitational force between two objects is the distance 'd'.