1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lisa [10]
3 years ago
5

Your clothing tends to cling together after going through the dryer. Why? Would you expect more or less clinging if all your clo

thing were made of the same material (say, cotton) than if you dried different kinds of clothing together? Again, why? (You may want to experiment with your next load of laundry.)
Physics
1 answer:
lys-0071 [83]3 years ago
4 0

Answer and Explanation:

The clothing after spinning in the dryer cling together. This is because in the dryer they are rubbed against each other and due to this rubbing, electrons are transferred from one to the other clothes and acquire charge as a result of charging by friction thus producing static electricity.

As the material of the clothes in the dryer is different, clinging will be more.

The sticking of these clothes together is known as Static cling.

In case, the clothing are of same material, the static electricity produced as a result of frictional charging would be less and hence less static cling would occur.

You might be interested in
A man applies a force of 100 Newtons to a rock for 60 seconds, but the rock does not not move. What is the amount of work done b
frozen [14]
Well if the rock doesn't move, then there is no amount of work done. There is no work done on an object if a force is applied to the object but it DOES NOT change its position, in this case is the rock.
7 0
3 years ago
Calculate the mass of -1.5C of electrons​
algol13
The electron is a type of low-mass, very negatively charged with a particle. As such, it can easily be deflected by passing close to other electrons or the positive nucleus of an atom. m = mass of an electron in kg = 9.10938356 × 10-31 kilograms. e = magnitude of the charge of an electron in coulombs = 1.602 x 10-19 coulombs. Hope this helps!
8 0
3 years ago
In this problem, you will answer several questions that will help you better understand the moment of inertia, its properties, a
scoundrel [369]

Answer:

a)  Total mass form, density and axis of rotation location are  True

b)   I = m r²

Explanation:

a) The moment of inertia is the inertia of the rotational movement is defined as

       I = ∫ r² dm

Where r is the distance from the pivot point and m the difference in body mass

In general, mass is expressed through density

        ρ = m / V

        dm = ρ dV

From these two equations we can see that the moment of inertia depends on mass, density and distance

Let's examine the statements, the moment of inertia depends on

- Linear speed       False

- Acceleration angular False

-  Total mass form True

-  density True

- axis of rotation location   True

b) we calculate the moment of inertia of a particle

For a particle the mass is at a point whereby the integral is immediate, where the moment of inertia is

          I = m r²

4 0
3 years ago
Using a density of air to be 1.21kg/m3, the diameter of the bottom part of the filter as 0.15m (assume circular cross-section),
salantis [7]

Answer:

The  drag coefficient is  D_z  =  1.30512  

Explanation:

From the question we are told that

     The density of air is  \rho_a  = 1.21 \ kg/m^3

     The diameter of bottom part is  d = 0.15 \ m

The  power trend-line  equation is mathematically represented as

      F_{\alpha }  = 0.9226 * v^{0.5737}

let assume that the velocity is  20 m/s

Then

      F_{\alpha }  = 0.9226 * 20^{0.5737}

       F_{\alpha }  = 5.1453 \ N

The drag coefficient is mathematically represented as

      D_z  =  \frac{2 F_{\alpha } }{A \rho v^2 }

Where  

     F_{\alpha } is the drag force

      \rho is the density of the fluid

       v is the flow velocity

       A is the area which mathematically evaluated as

       A = \pi r^2 =  \pi  \frac{d^2}{4}

substituting values

     A =  3.142 *    \frac{(0.15)^2}{4}

     A = 0.0176 \  m^2

Then

   D_z  =  \frac{2 * 5.1453 }{0.0176 * 1.12 *  20^2 }

   D_z  =  1.30512  

3 0
2 years ago
13 points and brainlyest if possible. Thanks.
nikdorinn [45]
Most likely it would be C not completely sure 
3 0
3 years ago
Read 2 more answers
Other questions:
  • A ball is dropped out of a window and falls for 8.75 s. What is the ball's final velocity?
    13·1 answer
  • A boy throws a rock with an initial velocity of 2.15 m/s at 30.0° above the horizontal. If air resistance is negligible, how lon
    10·1 answer
  • In what fundamental way did the work of Galileo differ from his predecessors who had thought about the sky?
    15·1 answer
  • Which is a correct statement of the second law of thermodynamics? Entropy of the universe is constantly increasing. Nature allow
    11·1 answer
  • What year will y'all graduate
    6·2 answers
  • For this exercise, use the position function s(t) = −4.9t2 + 250, which gives the height (in meters) of an object that has falle
    10·1 answer
  • An object of mass 0.50 kg is transported to the surface of Planet X where the object's weight is measured to be 20 N. The radius
    14·1 answer
  • Calculate the average speed of a gazelle that runs 140 meters in 5.0 seconds.
    14·2 answers
  • 2. A go-cart travels once around a circular track with a radius of 200m. What is its
    10·1 answer
  • Two charged particles are a distance of 1.72 m from each other. One of the particles has a charge of 7.03 nC, and the other has
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!