According to scientists, the first fossil of a jellyfish first appeared approximately 500 million years ago. Or to be more exact, the Cambrian Period.
Hope I could help! :)
Answer:
80m<em>/</em><em>s</em>
Explanation:
Final velocity is given by
v=u+at
when a motorcyclist starts from rest, initial velocity (u) =0
therefore
v=0+4*20
v=80m/s
that's the answer
Answer:
1.33
Explanation:
speed of light in vacuum, c = 3 x 10^8 m/s
speed of light in medium, v = 2.26 x 10^8 m/s
The refractive index of the medium is given by
μ = speed of light in vacuum / speed of light in medium
μ = (3 x 10^8) / (2.26 x 10^8)
μ = 1.33
Answer:
a = 1.41 m/s²
Explanation:
Given that
mass ,m= 41 kg
F₁ = 65 N , θ = 59°
F₂ = 35 N ,θ = 32°
The component of Force F₁
F₁x= F₁cos59° i
F₁x= 65 x cos59° i = 33.47 i
F₁y= - F₁ sin 59° j
F₁y= - 65 x sin 59° j = - 55.71 j
The component of Force F₂
F₂x= F₂ sin 32° i
F₂x= 35 x sin 32° i = 18.54 i
F₂y= F₂ cos 32° j
F₂y= 35 x cos 32° j = 29.68 j
The total force F
F= 33.47 i + 18.54 i - 55.71 j + 29.68 j
F= 52.01 i - 26.03 j
The magnitude of the force F

F=58.16 N
We know that
F= m a
a= Acceleration
m=mass
58.16 = 41 x a
a = 1.41 m/s²
49 J is the total kinetic energy. If a bowling ball of mass 7.3 kg and radius 9.6 cm rolls without slipping down a lane at 3.1 m/s. Kinetic energy is the energy an bowling ball has because of its motion.
Given: m = 7.3 Kg ; r = 9.4 cm = 0.094 m ; v = 3.1 m
Now total kinetic energy in this case is given by KE = Kinetic energy due to rotation + Kinetic energy due to translation
i,e KE = 1/2*m*v2 + 1/2*I*ω2 where I is the moment of inertia of the bowling ball about it's center and ω is the angular velocity
Now for pure rotation (without slipping) v = rω
also for the ball (solid sphere) I = 2/5*m*r2
Hence our kinetic energy becomes
KE = 1/2*m*v2 + 1/5*m*v2 = 7/10*m*v2
so KE = 0.7*7.3*(3.1)2 = 49.10 J = 49 J
Learn more about kinetic energy here
brainly.com/question/12669551
#SPJ4