How to calculate standard deviation given mean and sample size?
1 answer:
In addition to mean and sample size you will need the individual scores.
The formula for standard deviation is:
S^2 = E(X-M)^2/N-1
Here's an example:
Data set: 4,4,3,1
Mean: 3
Sample size: 4
First, put the individual scores one after the other and subtract the mean from it.
4 - 3 = 1
4 - 3 = 1
3 - 3 = 0
1 - 3 = -2
Second, square the answers you got from step 1.
1^2 = 1
1^2 = 1
0^2 = 0
-2^2 = 4
Third, plug the values from step 2 into the formula.
S^2 = (1+1+0+4)/(4-1) = 6/3 = 2
Standard deviation = 2
You might be interested in
Answer:
f(-5)=-125
Step-by-step explanation:
we have

<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>3.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
Answer:5/5 then 10-7 then 6/2
Step-by-sanation:
Answer:
Step-by-step explanation:
Since they are similar we can say
?/15=6/3
?=15(6)/3
?=30
Answer:
Step-by-step explanation:
