We Know That This Number Is:
Two-Thousand-Seven-Hundred-Eighty-Three.
So, This tells Us That The 2 Is The Thousandths Place.
So, We Also Know That The Value Of 2 In The 2nd One Is 200. This Means That The value of the first one is 10 times larger than the value of the 2 in the second one!
Answer:
solve the inequality /2x-1/≥3
Answer:
hi
Step-by-step explanation:
The surface area of a cylinder is define by the formula S.A.=2πrh+2<span>πr^2, where the first part of the formula refers to the lateral area, perimeter, or circumference and the second part to the area of the bases, which are circles.
On this exercise it is asked to find the lateral area of a cylinder whose radius is 6 cm, and has a height of 20cm. To find the lateral area of the cylinder you should substitute this values into the formula, S.A.=2</span>πrh, and as can be seen the answers are given in terms of <span>π or pi.
S.A.=2</span><span>πrh
S.A.=2</span><span>π(6cm)(20cm)
S.A.=2</span><span>π(120cm)
S.A.=240</span>π cm^2
The lateral area of the cylinder is 240<span>π cm^2 or in other words letter B from the given choices.</span>
Answer:
Approximately 22.97 years
Step-by-step explanation:
Use the equation for continuously compounded interest, which uses the exponential base "e":

Where P is the principal (initial amount of the deposit - unknown in our case)
A is the accrued value (value accumulated after interest is compounded), in our case it is not a given value but we know that it triples the original deposit (principal) so we write it as: 3 P (three times the principal)
k is the interest rate : 5% which translates into 0.05
and t is the time in the savings account to triple its value (what we need to find)
The formula becomes:

To solve for "t" we divide both sides of the equation by P (notice it cancels P everywhere), and then to solve for the exponent "t" we use the natural logarithm function:


