The slope is 3/1, which can be simplified to 3. Find it by traveling up 3 points and over 1 point form one intersection point to the next.
Answer:
Step-by-step explanation:
First thing is to remember the sin ratio. It is, by definition, the side opposite over the hypotenuse of the reference angle. In QIII the side opposite the angle is -8 which is one of the legs of a right triangle, and the hypotenuse, which is always positive, is 10. That means that if we are going to find the cosine of the angle, we need the other leg of the triangle. Using Pythagorean's Theorem, we find that
and
and
so
a = 6. But because we are QIII, that value is negative, because x is negative in QIII.
That leg happens to be the side adjacent to the angle. The cosine of the angle is the side adjacent over the hypotenuse. So now that we have the side adjacent as -6, we can say that the cosine of the angle is -6/10.
Step-by-step explanation:
![[( {27})^{n + 2} - 6 \times {3}^{3n + 3} ] \div {9}^{n + 2} \times {3}^{n} \\ \\ = [( {3}^{3}) ^{n + 2} - 2 \times 3 \times {3}^{3n + 3} ] \div {( {3}^{2}) }^{n + 2} \times {3}^{n} \\ \\ = [ {3} ^{3n + 6} - 2 \times {3}^{3n + 4} ] \div {{3}}^{2n + 4} \times {3}^{n} \\ \\ = [ {3} ^{3n + 4} ( {3}^{2} - 2 ) ] \div {{3}}^{3n + 4} \\ \\ = \frac{ {3} ^{3n + 4} (9- 2 ) }{{{3}}^{3n + 4} } \\ \\ = 7 \\](https://tex.z-dn.net/?f=%5B%28%20%7B27%7D%29%5E%7Bn%20%2B%202%7D%20%20-%206%20%5Ctimes%20%20%7B3%7D%5E%7B3n%20%2B%203%7D%20%5D%20%20%5Cdiv%20%20%7B9%7D%5E%7Bn%20%2B%202%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7Bn%7D%20%20%5C%5C%20%20%5C%5C%20%20%20%3D%20%20%5B%28%20%20%7B3%7D%5E%7B3%7D%29%20%5E%7Bn%20%2B%202%7D%20%20-%202%20%5Ctimes%203%20%5Ctimes%20%20%7B3%7D%5E%7B3n%20%2B%203%7D%20%5D%20%20%5Cdiv%20%20%7B%28%20%7B3%7D%5E%7B2%7D%29%20%7D%5E%7Bn%20%2B%202%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7Bn%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5B%20%7B3%7D%20%5E%7B3n%20%2B%206%7D%20%20-%202%20%5Ctimes%20%20%7B3%7D%5E%7B3n%20%2B%204%7D%20%5D%20%20%5Cdiv%20%20%7B%7B3%7D%7D%5E%7B2n%20%2B%204%7D%20%20%5Ctimes%20%20%7B3%7D%5E%7Bn%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5B%20%7B3%7D%20%5E%7B3n%20%2B%204%7D%20%20%28%20%7B3%7D%5E%7B2%7D%20-%202%20%29%20%5D%20%20%5Cdiv%20%20%7B%7B3%7D%7D%5E%7B3n%20%2B%204%7D%20%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B%20%7B3%7D%20%5E%7B3n%20%2B%204%7D%20%20%289-%202%20%29%20%7D%7B%7B%7B3%7D%7D%5E%7B3n%20%2B%204%7D%20%20%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%207%20%5C%5C%20)
Answer: The distance is 3.
Step-by-step explanation: Start on a number line from 0. Go back 4 and mark it at -4. Then go back to 0 and go back 1 and mark it at -1. If you count the space between -4 and -1 you will get 3 spaces.
Answer: See explanation
Step-by-step explanation:
From the question, we are informed that Lillian works 7 hours each day for 5 days a week and that she earns £420 each week.
Her earnings per day will be: $420/5 days = $84/day.
Since she works 7 hours each day, her earning per hour will be:
= $84/7
= $12 per hour.
We are further told that Lillian decides that she is going to work 7 hours each day for only 4 days a week and that her earnings are to be reduced by 20%.
Her new earning will be:
= $420 - (20% × $420)
= $420 - (0.2 × $420)
= $420 - $84
= $336.
Her earnings per day will be:
= $336/4 days
= $84 per day
Her earnings hour will be:
= $84/7
= $12 per hour
A reduction of 20% is reasonable as she has lesser days to work while still maintaining the same wage rate per hour. Her per hour rate is still $12 despite working for lesser days.