1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
3 years ago
8

How do you write 2= -2/7x + y in slope-intercept form?

Mathematics
1 answer:
Scrat [10]3 years ago
5 0
You'll want to get y alone

y = -2/7x - 2
You might be interested in
On a driving test, Roxane answered 70% of the 20 questions correctly. How many questions did
Nikitich [7]
She got 14 questions right
4 0
3 years ago
Read 2 more answers
Plzzzzzzz help right answer gets brainly
dsp73

Answer:

C:"As time dragged on, she sang to pass the hours."

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
|x-3|&lt;2<br> |4x+1|&gt;0<br> |x-1|&lt;5<br> Ayudaaaaaaa pleaseeeee
Dafna11 [192]

Recuerda que

• |<em>x</em>| = <em>x</em> si <em>x</em> ≥ 0

• |<em>x</em>| = -<em>x</em> si <em>x</em> < 0

Necesitas considerar dos casos:

• si <em>x</em> - 3 ≥ 0,

|<em>x</em> - 3| < 1   ⇒  <em>x</em> - 3 < 1   ⇒   <em>x</em> < 4

• si <em>x</em> - 3 < 0,

|<em>x</em> - 3| < 1   ⇒   -(<em>x</em> - 3) = 3 - <em>x</em> < 1   ⇒   -<em>x</em> < -2   ⇒   <em>x</em> > 2

Entonces la solución consta de todos los números reales <em>x</em> tales que <em>x</em> > 2 y <em>x</em> < 4, o simplemente 2 < <em>x</em> < 4.

El método para resolver las otras desigualdades es el mismo.

|4<em>x</em> + 1| > 0   ⇒   4<em>x</em> + 1 > 0   o   -(4<em>x</em> + 1) > 0

…   ⇒   4<em>x</em> + 1 > 0   o   -4<em>x</em> - 1 > 0

…   ⇒   4<em>x</em> > -1   o   -4<em>x</em> > 1

…   ⇒   <em>x</em> > -1/4   o   <em>x</em> < -1/4

⇒   <em>x</em> ≠ -1/4

|<em>x</em> - 1| < 5   ⇒   <em>x</em> - 1 < 5   o   -(<em>x</em> - 1) < 5

…   ⇒   <em>x</em> - 1 < 5   o   -<em>x</em> + 1 < 5

…   ⇒   <em>x</em> < 6   o   -<em>x</em> < 4

…   ⇒   <em>x</em> < 6   o   <em>x</em> > -4

⇒   -4 < <em>x</em> < 6

7 0
3 years ago
A circle has a radius of 3. An arc in this circle has a central angle of 20°
Alla [95]

Answer:

The length of the arc is 1.0467

Step-by-step explanation:

First of all to solve this problem we need to use the circumferenc formula of a circle:

c = circumference

r = radius = 3

π = 3.14

c = 2π * r

we replace with the known values

c = 2 * 3.14 * 3

c = 18.84

The length of the circumference is 18.84

Now we have to divide the 20° by the 360​​° that a circle has, to know what part of the circle it represents

20° / 360° = 1/18

Now we multiply this fraction by the circumference and obtain the length of the arc

1/18 * 18.84 = 1.0467

The length of the arc is 1.0467

4 0
3 years ago
Solve for x<br><br> THANK YOU
Anestetic [448]

Answer:

x=\dfrac{-17+ \sqrt{451} }{18}, \quad x=\dfrac{-17- \sqrt{451} }{18}

Step-by-step explanation:

\textsf{Given equation}:

\dfrac{2}{3}x+\dfrac{3x}{x}=\dfrac{4x}{2}(3x+6)

\textsf{Cancel the common factor } x \textsf{ in }\dfrac{3x}{x}:

\implies \dfrac{2}{3}x+3=\dfrac{4x}{2}(3x+6)

\textsf{Simplify }\dfrac{4x}{2}\textsf{ by dividing the numbers}:

\implies \dfrac{2}{3}x+3=2x(3x+6)

\textsf{Apply the distributive law}\quad \:a\left(b+c\right)=ab+ac:

\implies \dfrac{2}{3}x+3=6x^2+12x

\textsf{Multiply both sides by 3 to cancel the denominator of }\dfrac{2}{3}:

\implies \dfrac{2}{3}x\cdot 3+3\cdot 3=6x^2\cdot 3+12x \cdot 3

\implies 2x+9=18x^2+36x

\textsf{Switch sides}:

\implies 18x^2+36x=2x+9

\textsf{Subtract }2x \textsf{ from both sides}:

\implies 18x^2+36x-2x=2x+9-2x

\implies 18x^2+34x=9

\textsf{Subtract 9 from both sides}:

\implies 18x^2+34x-9=9-9

\implies 18x^2+34x-9=0

Solve using the <u>Quadratic Formula:</u>

x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0

Define the variables:

\implies a=18, \quad b=34, \quad c=-9

Substitute the defined variables into the quadratic formula and solve for x:

\implies x=\dfrac{-34 \pm \sqrt{34^2-4(18)(-9)} }{2(18)}

\implies x=\dfrac{-34 \pm \sqrt{1156+648} }{36}

\implies x=\dfrac{-34 \pm \sqrt{1804} }{36}

\implies x=\dfrac{-34 \pm \sqrt{4 \cdot 451} }{36}

\implies x=\dfrac{-34 \pm \sqrt{4}\sqrt{451} }{36}

\implies x=\dfrac{-34 \pm 2\sqrt{451} }{36}

\implies x=\dfrac{-17 \pm \sqrt{451} }{18}

Therefore, the solutions to the given equation are:

x=\dfrac{-17+ \sqrt{451} }{18}, \quad x=\dfrac{-17- \sqrt{451} }{18}

Learn more about the Quadratic Formula here:

brainly.com/question/28105589

brainly.com/question/23700639

3 0
2 years ago
Read 2 more answers
Other questions:
  • Hugo and Viviana work in an office with eight other coworkers. Out of these 10 workers, their boss needs to choose a group of fo
    11·1 answer
  • PLSSSS HELP ME IM DESPERATE PLSS GIVE ME EXPLANATION PLLSS
    6·1 answer
  • 0.019 in scientific notation
    13·2 answers
  • Simplify - 42 (x^2+4x+4)
    13·1 answer
  • How many cities could have an annual rainfall of 28.5 in 32.5 in
    15·2 answers
  • GIVING OUT BRAINLIEST HELP MEEE PLSS!!
    7·2 answers
  • Divide. Write the answer in simplest form. 3=6= 8<br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7B8%7D%20%20%5Cdiv%206"
    9·1 answer
  • Please can you answer this whole page please
    6·1 answer
  • Express as a trinomial.
    6·1 answer
  • Please help and explain how you got it!!
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!