We use the following expression
T = 2*pi *sqrt(l/g)
Where T is the period of the pendulum
l is the length of the pendulum
and g the acceleration of gravity
We solve for l
l = [T/2*pi]² *g = [30s/2*pi]²* 9.8 [m/s²] = 223.413 m
The tower would need to be at least 223.413 m high
From the calculation, the gravitational force of attraction is 1.33 * 10^-14 N.
<h3>What is the gravitational force?</h3>
The gravitational force is an attractive force that acts between any two masses.
It is given by;
F = Gm1m2/r^2
F = 6.67 * × 10−11 * 2.5 * 5/(250)^2
F = 83.4 × 10−11 /62500
F= 1.33 * 10^-14 N
Learn more about gravitational force:brainly.com/question/12528243
#SPJ1
Answer:
The maximum height the pebble reaches is approximately;
A. 6.4 m
Explanation:
The question is with regards to projectile motion of an object
The given parameters are;
The initial velocity of the pebble, u = 19 m/s
The angle the projectile path of the pebble makes with the horizontal, θ = 36°
The maximum height of a projectile,
, is given by the following equation;

Therefore, substituting the known values for the pebble, we have;

Therefore, the maximum height of the pebble projectile,
≈ 6.4 m.
Answer:
C. 12m
Explanation:

from the graph v = 4m/s and t = 3 s
d = vt = 4 × 3 = 12 m
Answer:
Explanation:
Given that:
angular frequency = 11.3 rad/s
Spring constant (k) = 
k = (11.3)² m
k = 127.7 m
where;
= 0.065 m
= 0.048 m
According to the conservation of energies;

∴



