Maximum number of electrons in nth energy level

Now
Max electrons


<span>nuclear symbol consists of three parts: 1. the symbol of the
element; 2. the atomic number of the element;3. the mass of the element. for
the above problem, the symbol for potassium is k. it's atomic number is 40. the
number of protons is 19. so we denote this in the following nuclear symbol; 40
k 19</span>
<h3><u>Answer;</u></h3>
= 5.1 g/L
<h3><u>
Explanation;</u></h3>
Using the equation;
PV = nRT , where P is the pressure,. V is the volume, n is the number of moles and T is the temperature and R is the gas constant, 0.08206 L. atm. mol−1.
Number of moles is 1 since one mole has a mass equivalent to the molar mass.
Therefore; We can find the volume and thus get the density.
<em>V = nRT/P</em>
<em> = (1 × 0.08206 × 237)/3.510</em>
<em> = 5.5408 L</em>
<em>Hence; Density = mass/volume </em>
<em> = 28.26 g/5.5408 L</em>
<em> = 5.1 g/L</em>
<em>The Density is 5.1 g/L or 0.005 g/cm³</em>
Considering the Dalton's partial pressure, the total pressure in the mixture of gases is 1.371 atm.
The pressure exerted by a particular gas in a mixture is known as its partial pressure.
So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
= 
where n is the amount of gases in the mixture.
Dalton's partial pressure law can also be expressed in terms of the mole fraction of the gas in the mixture. So in a mixture of two or more gases, the partial pressure of gas A can be expressed as:
= 
In this case, the partial pressure of gas H₂ can be expressed as:
= 
You know:
= 0.48 atm
= 0.35
Replacing in the definition of partial pressure of gas H₂:

Solving:
= 
= 1.371 atm
In summary, the total pressure in the mixture of gases is 1.371 atm.
Learn more about partial pressure: brainly.com/question/15302032
#SPJ4