Answer:
75 ml of 0.1M base neutralizes 25 ml of 0.1M acid, which means the acid has 0.3 moles/L of H ion
but that means each molecule of the acid has 3 times as many H ions aH ions in a molecule of NaOH
which means the formula for the acid must be H3A and
the value of x in
HxA is 3
Explanation:
75ml of a solutipn of 0.1moL l-1 NaOH neutralises 25ml of a solution of an acid. The formula of the acid is HxA and the concentration of the acid is 0.1mol l-1. What is the value of x?
the concentration of both the and the base are the same at 0.1M
the base...NaOH has 0.1 moles/L of OH ion
75 ml of 0.1M base neutralizes 25 ml of 0.1M acid, which means the acid has 0.3 moles/L of H ion
but that means each molecule of the acid has 3 times as many H ions aH ions in a molecule of NaOH
which means the formula for the acid must be H3A and the value of x in
HxA is 3
Answer:
The total mass of the reactants in a chemical reaction is conserved and will be equal to the total original mass of the products
Explanation:
Answer:
B
Explanation:
Iron becomes liquid when we heat it to a temperature of 1535° C this is it's melting point. If we further heat the liquid to 3,000° C it boils; iron is a gas above this temperature.
Talk to them and listen to each other. if they aren’t ready to talk, give them space. once both of you are ready, you can make up and forgive each other. don’t bother them by asking a lot of questions and forcing them to talk to you. and if they’re doing that, tell them you need time to think. just be sure to talk to them, listen, and understand. tell each other both sides of the stories. of course, different situations can require different solutions. so resolve it when it’s time :)
Answer:
-6.27 kj
Explanation:
Given data:
Energy released = ?
Mass of steam = 15 g
Initial temperature = 100°C
Final temperature = 0°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 0°C - 100°C = -100°C
Q = 15g × 4.18 j/g.°C × -100°C
Q = -6270 j
J to KJ:
-6270 j/1000 = -6.27 kj