Answer:

when there is a radical in the denominator, we should rationalize (mutiply the denominator and numerator by the radical) to get rid of the radical in the denominator.
Answer:
1. HBr>HCl> H2S >BH3
2.K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
Explanation:
As one goes down a row in the Periodic Table the properties that determine the acid strength can be observed.
The atoms get larger in radius meaning that in strength, the strength of the bonds get weaker, conversely meaning that the acids get stronger.
For the halogen-containing acids above following the rows and periods, HBr has the strongest bond and is the strongest acid and others follow in this order.
HBr>HCl> H2S >BH3
Acid Dissociation Constant provides us with information known as the ionization constant which comes in handy to measure the acid's strength. The meaning of the proportions are thus, the higher the Ka value, the stronger the acid i.e. it liberates more number of hydrogen ions per mole of acid in solution.
In solution strong acids completely dissociate hence, the value of dissociation constant of strong acids is very high.
Following the cues above on Ka;
K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
The reaction between N₂ and F₂ gives Nitrogen trifluoride as the product. The balanced equation is;
N₂ + 3F₂ → 2NF₃
The stoichiometric ratio between N₂ and NF₃ is 1 : 2
Hence,
moles of N₂ / moles of F₂ = 1 / 2
moles of N₂ / 25 mol = 0.5
moles of N₂ = 0.5 x 25 mol = 12.5 mol
Hence N₂ moles needed = 12.5 mol
At STP (273 K and 1 atm) 1 mol of gas = 22.4 L
Hence needed N₂ volume = 22.4 L mol⁻¹ x 12.5 mol
= 280 L
B: produces energy for the cell
Answer:
Uh, the second one?
Explanation:
Try to restate the question please.