Answer:
2.35 m/s²
Explanation:
Given that
Mass of the smaller crate, m₁ = 21 kg
Mass of the larger crate, m₂ = 90 kg
Tensión of the rope, T = 261 N
We know that the sum of all forces for the two objects with a force of friction F and a tension T are:
(i) m₁a₁ = F
(ii) m₂a₂ = T - F, where m and a are the masses and accelerations respectively.
1) no sliding can also mean that:
a₁ = a₂ = a
This makes us merge the two equations written above together as:
m₂a = T - m₁a
If we then solve for a, we would have something like this
a = T / (m₁+m₂)
a = 261 / (21 + 90)
a = 261 / 111
a = 2.35 m/s²
Therefore, the needed acceleration of the small crate is 2.35 m/s²
a. work is the time it takes to move an object once acted upon by a force
Answer:
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.
Explanation:
Practically yes
So
If mass is more output may come less so it affects the efficiency practically
But thepritically it doesn't
Pure water.
A salt solution contains impurities whereas pure water will not contain any impurities.
Impurities increase the boiling point (freezing point) of a substance.
Thus, I would expect the pure water solution to freeze faster than the salt solution.