This is an example of observational study, because the biologist is not interfering or interacting with the subjects of study but just watching and registering data (recording with cameras).
The biologist is not conducting an experiment because (he is not setting up special conditions to register different responses to drive conclusions), and the biologist is not making any survey (questionnaires for example).
Answer: observational study
Answer:
a) (iii) ANOVA
b) The ANOVA test is more powerful than the t test when we want to compare group of means.
Step-by-step explanation:
Previous concepts
Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".
The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"
If we assume that we have
groups and on each group from
we have
individuals on each group we can define the following formulas of variation:



And we have this property

Solution to the problem
Part a
(i) confidence interval
False since the confidence interval work just when we have just on parameter of interest, but for this case we have more than 1.
(ii) t-test
Can be a possibility but is not the best method since every time that we conduct a t-test we have a chance that we commit a Type I error.
(iii) ANOVA
This one is the best method when we want to compare more than 1 group of means.
(iv) Chi square
False for this case we don't want to analyze independence or goodness of fit, so this one is not the correct test.
Part b
The ANOVA test is more powerful than the t test when we want to compare group of means.
Your answer is 1/15 hope this helps
50^2 means 50 squared. or 50 to the square root of 2
Answer:
If a person is randomly selected from this group, the probability that they have both high blood pressure and high cholesterol is P=0.25.
Step-by-step explanation:
We can calculate the number of people from the sample that has both high blood pressure (HBP) and high cholesterol (HC) using this identity:

We can calculate the probability that a random person has both high blood pressure and high cholesterol as:
