The equation relating length to width
L = 3W
The inequality stating the boundaries of the perimeter
LW <= 112
When you plug in what L equals in the first equation into the second equation, you get
3W * W <= 112
evaluate
3W^2 <= 112
3W <=

W <=

cm
Answer:
The length=16cm and the width=8cm.
Step-by-step explanation:
Given that the length is twice the breadth or width of the rectangle
Let's assume that the breadth of the rectangle is x.
Thus the length is 2x.
Given perimeter=48cm
The formula for the perimeter of a rectangle is 2(l+b) where l is length and b is breadth.
2(x+2x)=48
(3x)=48/2
3x=24
x=8cm
2x=16cm
The volume is 336 cubic feet
6x8x3 = 144
8x4x6= 192
144+192=336
1) x = 60/31 = 1.935
2.) m = 8/3 = 2.667
So if you go on tiger algebra, they will show the steps taken to get there. Hope this helps!