More information ---------------------------------------------
l-l lxl
-----------------------------------------------
you can't enter to this page -
----------------------------------------------------------------------------
Answer:
The answer is 20.
Step-by-step explanation:
An isosceles triangle is a type of triangle where 2 sides are equal.
Picture out 2 triangles with the same base length.
On the first triangle, its legs are twice the length of the legs of the second triangle.
To put it into variables, let:
B = the same base length of the two triangles
A = the length of one leg the smaller triangle
2A = the length of one leg of the bigger triangle
Given: Perimeter of smaller triangle = 23cm
Perimeter of bigger triangle = 43cm
Recall the formula for solving the perimeter of a triangle:
Perimeter = A + B + C
where, A, B, and C are the legs of the triangle
Since the triangle involved is an isosceles triangle, therefore, we can say that
Perimeter = 2A + B , 2 legs are equal ( A=C )
Substituting the given perimeter value to the formula.
23cm = 2A + B ⇒ equation 1 (smaller triangle)
43cm = 2(2A) + B ⇒ equation 2 (bigger triangle)
Simplifying equation 2.
43cm = 4A + B
(rearranging) B = 43cm - 4A ⇒ equation 3
Substituting equation 3 to equation 1:
(equation 1) 23cm = 2A + B
23cm = 2A + (43cm - 4A)
23cm = -2A + 43cm
2A = 43cm - 23cm
2A = 20cm ⇒ length of the leg of the bigger triangle
A = 10cm ⇒ length of the leg of the smaller triangle
To solve for the base length, just substitute the value of A to equation 3
(equation 3) B = 43cm - 4A
B = 43cm - 4(10cm)
B = 3 cm
Final Answer:
• For the smaller triangle, the length of the sides are 10cm, 10cm, and 3cm
• For the bigger triangle, the length of the sides are 20cm, 20cm, and 3cm
Answer:
The length of the triangle is 22.
Step-by-step explanation:
Area = width*length
length = area/width = 198/9 = 22
Answer:
See attached image
Step-by-step explanation:
This equation for a parabola is given in vertex form, so it is very simple to extract the coordinates of its vertex, by using the opposite of the number that accompanies the variable "x" in the squared expression (opposite of 2) for the vertex's x-value, and the value of the constant (-6) for the vertex's y-value.
The vertex coordinates are therefore: (-2,-6)
The equation of the axis of symmetry of the parabola is a vertical line passing through the vertex. Since all vertical lines have the shape x = constant in our case, in order to pass through (-2,-6) the vertical line is defined by the equation: x = -2.
See image attached to find the vertex drawn as a red point, and the axis of symmetry as an orange vertical line passing through it.