1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentina_108 [34]
3 years ago
15

At what distance of separation, r, must two 3.20 x 10-9 Coulomb charges be positioned in order for the repulsive force between t

hem to be 83.4 N?
Physics
2 answers:
nataly862011 [7]3 years ago
7 0
F = q₁*q₂* C / r²

F =83.4
q₁ = q₂ = 3.2 * 10⁻⁹
C couloumb constant 8.9 * 10⁹

solve for r
STatiana [176]3 years ago
4 0
I'm not 100% sure but I think the answer is 60.4, because you multiply 3.20 by 10, to get 32 - 9 = 23, then subtract 23 from 83.4. Hope this helps you, and good luck!!!
You might be interested in
Find the pressure exerted by a 3000 N crate that has an area of 2m squared
ipn [44]
Pressure = Force/ Area = 3000/2 = 1500 pascal.
8 0
3 years ago
Help me please (* ̄(エ) ̄*)​
Len [333]

Answer:

1) Are always conservative

Explanation:

Elastic forces are always conservative.

Hope it helps you.

please mark as the brainliest answer.

3 0
2 years ago
Read 2 more answers
(b) The distance of mass from mass A if there is no gravitational force acted on C
shepuryov [24]

Answer:

(a) The force, acting on object 'C' is approximately 2.66972 × 10⁻¹⁰ Newtons

(b) The distance of 'C' from 'A', in the direction particle 'B' if there is no  meters gravitational force acting on 'C' is appromimately 0.829 meters or 1.877 meters

Explanation:

The given parameters are;

The mass of particle, A, m₁ = 2 kg

The mass of particle, B, m₂ = 0.3 kg

The mass of particle, C, m₃ = 0.05 kg

The distance between particle 'A' and particle 'B', r₁ = 0.15 m

The distance between particle 'B' and particle 'C', r₂ = 0.05 m

(a) The gravitational force, 'F', is given as follows;

F =G \times \dfrac{m_{1} \times m_{2}}{r^{2}}

Where;

F = The force between the two masses

G = The gravitation constant = 6.67430 × 10⁻¹¹ N·m²/kg²

m₁ = The mass of object 1

m₂ = The mass of object 2

If 'C' is placed at 0.05 m from 'B', we have;

F₂₃ =  6.67430 × 10⁻¹¹ × 0.05 × 0.3/(0.05²) ≈ 4.00458 × 10⁻¹⁰

The gravitational force between force between particle 'B' and particle 'C', F₂₃ = 4.00458 × 10⁻¹⁰ N (towards the right)

F₁₃ =  6.67430 × 10⁻¹¹ × 0.05 × 2/(0.1²) ≈ × 10⁻¹⁰

The gravitational force between force between particle 'A' and particle 'B', F₁₃ = 6.6743 × 10⁻¹⁰ N (towards the left)

The force, 'F', acting on object 'C' = F₁₃ - F₂₃

F = (6.6743 - 4.00458) × 10⁻¹⁰ = 2.66972 × 10⁻¹⁰ N

The force, acting on object 'C' ≈ 2.66972 × 10⁻¹⁰ N

(b), When there is no gravitational force acting on 'C', let the distance of 'C' from 'A' = x

We have;

F₂₃ = F₁₂

F_{23} =G \times \dfrac{m_{1} \times m_{2}}{r_1^{2}} = F_{13} =G \times \dfrac{m_{1} \times m_{3}}{r_2^{2}}

By plugging in the values and removing like terms, we get;

\dfrac{0.3 \times 0.05}{(1.15 - x)^{2}}  = \dfrac{2 \times 0.05}{x^2}

(1.15 - x)² × 2 × 0.05 = 0.3 × 0.05 × x²

0.1·x² - 0.23·x + 1.3225 = 0.015·x²

0.1·x² - 0.23·x + 1.3225 - 0.015·x² = 0

0.085·x² - 0.23·x + 0.13225= 0

x = (0.23± √((-0.23)² - 4 × 0.085 × ( 0.13225)))/(2 × 0.085))

x ≈ 0.829, or x ≈ 1.877

Therefore, the distance of 'C' from 'A', if there is no gravitational force acting on 'C', x ≈ 0.829 m, or x = 1.877 m, in the direction of 'B'

7 0
2 years ago
System A has masses m and m separated by a distance r; system B has masses m and 2m separated by a distance 2r; system C has mas
Anna [14]

Answer:

System D --> System C --> System A --> System B

Explanation:

The gravitational force between two masses m1, m2 separated by a distance r is given by:

F=G \frac{m_1 m_2}{r^2}

where G is the gravitational constant. Let's apply this formula to each case now to calculate the relative force for each system:

System A has masses m and m separated by a distance r:

F=G\frac{m \cdot m}{r^2}=G \frac{m^2}{r^2}

system B has masses m and 2m separated by a distance 2r:

F=G\frac{m \cdot 2m}{(2r)^2}=G \frac{2m^2}{4r^2}=\frac{1}{2} G \frac{m^2}{r^2}

system C has masses 2m and 3m separated by a distance 2r:

F=G\frac{2m \cdot 3m}{(2r)^2}=G \frac{6m^2}{4r^2}=\frac{3}{2} G \frac{m^2}{r^2}

system D has masses 4m and 5m separated by a distance 3r:

F=G\frac{4m \cdot 5m}{(3r)^2}=G \frac{20m^2}{9r^2}=\frac{20}{9} G \frac{m^2}{r^2}

Now, by looking at the 4 different forces, we can rank them from the greatest to the smallest force, and we find:

System D --> System C --> System A --> System B

5 0
3 years ago
cylindrical container is to be constructed to be open at the top with a volume of 27π cubic meters using the least amount of mat
Llana [10]

Answer:

radius comes out to be 3 m

height of the cylinder comes out to be 3m

Explanation:

given

volume of cylinder = 27π m³

π r² h = 27π

   r² h = 27.............(1)

surface area of cylinder open at the top

S = 2πrh + π r²

S = 2\pi \dfrac{27}{r} + \pi r^2

\frac{\mathrm{d} s}{\mathrm{d} r}=\frac{\mathrm{d}}{\mathrm{d} r} (2\pi \dfrac{27}{r} + \pi r^2)

\frac{\mathrm{d} s}{\mathrm{d} r}=54\pi \dfrac{-1}{r^2}+2\pi r

\frac{\mathrm{d} s}{\mathrm{d} r}=0

for least amount of material requirement.

\dfrac{54\pi }{r^2} = 2\pi r\\r=3m

hence radius comes out to be 3 m

for height put the value in the equation 1

so, height of the cylinder comes out to be 3m

3 0
3 years ago
Read 2 more answers
Other questions:
  • Technician A says that the starter motor used to crank diesel engines can draw up to 400 amps of current. Technician B says that
    9·1 answer
  • Why do smaller endotherms require more energy per unit of mass than larger endotherms?
    12·1 answer
  • Why do you see colors when you look at reflected light from a cd
    12·1 answer
  • 1.A wave has a period of 20 seconds. What is the frequency?
    13·1 answer
  • 1. Vertically oriented circular disks have strings wrapped around them. The other ends of the strings are attached to
    14·1 answer
  • Will give brainliest!!
    6·1 answer
  • 2. The word used to represent a chemical reaction is a/an a. Atom b. Formula O c. Equation d. Symbol​
    7·1 answer
  • Two drums of the same size and same height are taken.
    5·1 answer
  • Which has more kinetic
    9·2 answers
  • A particle is moving at a speed less than c / 2 . If the speed of the particle is doubled, what happens to its momentum?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!