The velocity vector of the planet points toward the center of the circle is the following is true about a planet orbiting a star in uniform circular motion.
A. The velocity vector of the planet points toward the center of the circle.
<u>Explanation:</u>
Motion of the planet around the star is mentioned to be uniform and around a circular path. Objects in uniform circular motion motion has constant angular speed but the velocity of the object will not remain constant. Since the planet is in circular motion the direction of velocity vector at a particular point is tangential to the circular path at that particular point.
Thus at every point, the direction of velocity vector changes and this means the velocity is never constant. The objects in uniform circular motion has centripetal acceleration which means that velocity vector of the planet points toward the center of the circle.
Answer:
the rate that the energy of a system is transformed
Explanation:
We can define energy as the capacity or ability to do work. Power is defined as the rate of doing work or the rate at which energy is transformed. It can also be regarded as the time rate of energy transfer. In older physics literature, power is sometimes referred to as activity.
Power is given by energy/time. Its unit is watt which is defined as joule per second. Another popular unit of power is horsepower. 1 horsepower = 746 watts.
Very large magnitude of power is measured in killowats and megawatts.
Answer:
the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case
Explanation:
To create the shapes, stars are arranged on a piece of cardboard in the desired configuration. If the stars are placed in a smiley face pattern on the cardboard, for example, they will explode into a smiley face in the sky. In fact, you may see several smiley faces in the sky at one time.
Your Welcome
Answer:
Explanation:
Given
For first case
launch angle 
at highest point 


For second case

at highest Point velocity is 

as there is no acceleration in x direction therefore horizontal velocity is same