Answer:
C. 0.25J
Explanation:
Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;
L is the inductance
I is the current flowing in the inductor
Given parameters
L = 20mH = 20×10^-3H
I = 5A
Required
Energy stored in the magnetic field.
E = 1/2 × 20×10^-3 × 5²
E = 1/2 × 20×10^-3 × 25
E = 10×10^-3 × 25
E = 0.01 × 25
E = 0.25Joules.
Hence the energy stored in the magnetic field of this inductor is 0.25Joules
Utilize the formula: 
= Final Velocity (86 m/s)
= Initial Velocity (0 m/s)
a = acceleration (m/s²)
t = Time (100 seconds)
As a result,
86 m/s = 0 + (a)(100 seconds)
Using algebra, divide 86 m/s by 100 seconds:
86 m/s = 100a
a = 0.86 m/s²
Rounded to one decimal place: 0.9 m/s²
Let me know if you have any questions!
Answer:
354200J
Explanation:
Given parameters:
Mass of copper bushing = 8kg
Initial temperature = 25°C
Final temperature = 140°C
Unknown:
Quantity of heat required to heat this mass = ?
Solution:
The amount of heat required to heat mass from one temperature to another is given by;
H = m c Δt
where m is the mass
c is the specific heat
Δt is the change in temperature
C is a constant and for copper, its value is 385J/kg°C
Input the parameters;
H = 8 x 385 x (140 - 25) = 354200J
Answer:
The mass of the solid cylinder is 
Explanation:
From the question we are told that
The radius of the grinding wheel is 
The tangential force is 
The angular acceleration is 
The torque experienced by the wheel is mathematically represented as

Where I is the moment of inertia
The torque experienced by the wheel can also be mathematically represented as

substituting values


So


So

This moment of inertia can be mathematically evaluated as

substituting values

=> 