Answer:
?
Step-by-step explanation:
Sent a picture of the solution to the problem (s).
Answer: The number of first-year residents she must survey to be 95% confident= 263
Step-by-step explanation:
When population standard deviation (
) is known and margin of error(E) is given, then the minimum sample size (n) is given by :-
, z* = Two-tailed critical value for the given confidence interval.
For 95% confidence level , z* = 1.96
As,
= 8.265, E = 1
So, ![n= (\dfrac{1.96\times8.265}{1})^2 =(16.1994)^2\\\\= 262.42056036\approx263\ \ \ [\text{Rounded to the next integer}]](https://tex.z-dn.net/?f=n%3D%20%28%5Cdfrac%7B1.96%5Ctimes8.265%7D%7B1%7D%29%5E2%20%3D%2816.1994%29%5E2%5C%5C%5C%5C%3D%20262.42056036%5Capprox263%5C%20%5C%20%5C%20%5B%5Ctext%7BRounded%20to%20the%20next%20integer%7D%5D)
Hence, the number of first-year residents she must survey to be 95% confident= 263
is the inequality that describes this problem
<h3><u>Solution:</u></h3>
Given that Travis can spend no more than $125.75 every month
To find: linear inequality that describes the problem
Let the amount spent on movies = x dollars
Given that Travis decided to spend 4.3 times as much money on video games as he spends on movies
Amount spent on video games = 4.3 (amount spent on movies)
Amount spent on video games = 4.3x
Travis can spend no more than $125.75. That is, he can spend less than or equal to $125.75
<em><u>Thus, the inequality representing the situation is:</u></em>


Thus the required inequality is found