Answer:
where is the statement?????!!!
Answer:
x= -3 and y= 0
Step-by-step explanation:
5x+2y=-15
<u>2x-2y=-6 </u>
<u>7x =-21</u>
x= -3
Putting value of x in equation 1
5(-3) +2y=-15
-15+2y= -15
2y= 0
y= 0
This can be solved with the help of matrices
In matrix form the above equations can be written in the form
= ![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-15%5C%5C-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let
= A
= X and
= B
Then AX= B
or X= A⁻¹ B
where A⁻¹= adj A/ ║A║ where mod A≠ 0
adj A= ![\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%26-2%5C%5C-2%265%5C%2F%5Cend%7Barray%7D%5Cright%5D)
║A║= ( 5*-2- 2*2)= -10-4= -14≠0
X= A⁻¹ B
=- 1/14
![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-15%5C%5C-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc}-2*-15&+ -2*-6\\-2*-15&+ 5*-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%2A-15%26%2B%20-2%2A-6%5C%5C-2%2A-15%26%2B%205%2A-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc} 30&+12\\30&+-30\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2030%26%2B12%5C%5C30%26%2B-30%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc}42\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D42%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}-42/14\\0/-14\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-42%2F14%5C%5C0%2F-14%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}-3\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
From here x= -3 and y= 0
Solution Set = [(-3,0)]
First term ,a=4 , common difference =4-7=-3, n =50
sum of first 50terms= (50/2)[2×4+(50-1)(-3)]
=25×[8+49]×-3
=25×57×-3
=25× -171
= -42925
derivation of the formula for the sum of n terms
Progression, S
S=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)
S=n/2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n/2{a1+[a1+(n−1)d]}
S=n/2[2a1+(n−1)d]
Answer:
x>−6,x<−12
Step-by-step explanation:
Break down the problem into these 2 equations.
x+9>3x+9>3
-(x+9)>3−(x+9)>3
Solve the 1st equation: x+9>3x+9>3.
x>-6x>−6
3 Solve the 2nd equation: -(x+9)>3−(x+9)>3.
x<-12x<−12
Collect all solutions.
x>-6,x<-12x>−6,x<−12
The absolute value equation with the wanted solutions is:
|x| - 1/2 = 0
<h3>
How to find the absolute value equation?</h3>
Here we want to find an absolute value equation such that the solutions are:
x = -1/2 and x = 1/2.
Remember that the absolute value equation always changes the sign, such that the outcome is positive.
This means that:
|1/2| = 1/2
|-1/2| = 1/2
Then a trivial equation with these two solutions is:
|x| - 1/2 = 0
Where the two solutions are x = 1/2 and x = -1/2.
If you want to learn more about absolute value equations:
brainly.com/question/5012769
#SPJ1