The answer is C
Is shows a change of rate for the integer
Hope this helps
Answer:
9
Step-by-step explanation:
3*3 =9
Answer:
14 gallons....$42
Step-by-step explanation:
The car requires one gallon every 32 miles...
The car requires c gallons for 448 miles
c = 448 × 1 / 32
= 14 gallons..
One gallon = $3
Fourteen gallons = ??
14 × 3 / 1 = $42
Answer:
g(-4) = -1
g(-1) = -1
g(1) = 3
Explanation:
If you are given a function that is defined by a system of equations associated with certain intervals of x, just find which interval makes x true, and then substitute x into the equation of that interval.
For example, given g(-4), this is an expression which is asking for the value of the equation when x = -4. So -4 is not ≥ 2, so ¼x - 1 will not be used. -4 is also not ≤ -1 and ≤ 2, so -(x - 1)² + 3 will not be used either. So in turn, we will just use -1 which is always -1 so g(-4) will just be -1, right because there is no x variable in -1 so it will always be the same.
Using the same idea as before g(-1) is g(x) when x = -1 so -1 will not be a solution because -1 is not less than -1 (< -1). -1 is not ≥ 2 either so we will be using the second equation because -1 is part of the interval -1≤x≤2 (it is a solution to this inequality), therefore -(x - 1)² + 3 will be used.
As x = -1, -(x - 1)² + 3 = -(-1 - 1)² + 3 = -(-2)² + 3 = -4 + 3 = -1.
It is a coincidence that g(-1) = -1.
Now for g(1), where g(x) has an input of 1 or the value of the function where x = 1, we will not use the first equation because x = 1 → x < -1 → 1 < -1 [this is false because 1 is never less than -1], so we will not use -1.
We will use -(x - 1)² + 3 again because 1 is not ≥ 2, 1≥2 [this is also false]. And -1 ≤ 1 < 2 [This is a true statement]. Therefore g(1) = -(1 - 1)² + 3 = -(0)² + 3 = 3
Answer:
it 5.5⋅10−^8m
Step-by-step explanation:
Unless I'm missing something important here, you can find the difference between the two wavelengths by subtracting one from the other. Since you're interested in finding how much longer the wavelength associated with the orange light is, subtract the wavelength of the green light from the wavelength of the orange light. You know that the two measured wavelengths are 6.15 ⋅ 10 − 7 m → orange light 5.6 ⋅ 10 − 7 m → green light Therefore, the difference between the two wavelengths will be Δ wavelength = 6.15 ⋅ 10 − 7 m − 5.6 ⋅ 10 − 7 m = 5.5 ⋅ 10 − 8 m