Answer:
1. C. cylindrical coordinates
2 A. spherical coordinates
3. A. spherical coordinates
4. D. Cartesian coordinates
5 B. polar coordinates
Step-by-step explanation:
USE THE BOUNDARY INTERVALS TO IDENTIFY
1. ∭E dV where E is:
x^2 + y^2 + z^2<= 4, x>= 0, y>= 0, z>= 0 -- This is A CYLINDRICAL COORDINATES SINCE x>= 0, y>= 0, z>= 0
2. ∭E z^2 dV where E is:
-2 <= z <= 2,1 <= x^ 2 + y^2 <= 2 This is A SPHERICAL COORDINATES
3. ∭E z dV where E is:
1 <= x <= 2, 3<= y <= 4,5 <= z <= 6 -- This is A SPHERICAL COORDINATES
4. ∫10∫y^20 1/x dx ---- This is A CARTESIAN COORDINATES
5. ∬D 1/x^2 + y^2 dA where D is: x^2 + y^2 <=4 This is A POLAR COORDINATES
![a\cdot a\cdot a=216\\\\a^3=216\to a=\sqrt[3]{216}\\\\\boxed{a=6}\\\\\text{Substitute}\ b\cdot c=52\ \text{to the second expression}\ a\cdot b\cdot c=96:\\\\abc96\ \wedge\ bc=52\to a(52)=96\qquad\text{divide both sides by 52}\\\\a=\dfrac{96}{52}\to a=\dfrac{24}{13}\neq6](https://tex.z-dn.net/?f=a%5Ccdot%20a%5Ccdot%20a%3D216%5C%5C%5C%5Ca%5E3%3D216%5Cto%20a%3D%5Csqrt%5B3%5D%7B216%7D%5C%5C%5C%5C%5Cboxed%7Ba%3D6%7D%5C%5C%5C%5C%5Ctext%7BSubstitute%7D%5C%20b%5Ccdot%20c%3D52%5C%20%5Ctext%7Bto%20the%20second%20expression%7D%5C%20a%5Ccdot%20b%5Ccdot%20c%3D96%3A%5C%5C%5C%5Cabc96%5C%20%5Cwedge%5C%20bc%3D52%5Cto%20a%2852%29%3D96%5Cqquad%5Ctext%7Bdivide%20both%20sides%20by%2052%7D%5C%5C%5C%5Ca%3D%5Cdfrac%7B96%7D%7B52%7D%5Cto%20a%3D%5Cdfrac%7B24%7D%7B13%7D%5Cneq6)
a = 6 and a = 24/13 FALSE!!!
<h3>Answer: NO SOLUTION.</h3>
Answer:
The term that can be added to the list so the GCF is 12h3 would be 48h5.
I hope this helped!! :)