Answer:
5 1/3
Step-by-step explanation:
2/3 x 8 = 2 x 8 / 3 = 16 / 3 = 5 1/3
Answer:
The value of the constant C is 0.01 .
Step-by-step explanation:
Given:
Suppose X, Y, and Z are random variables with the joint density function,

The value of constant C can be obtained as:



![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1z%7D%20%7D%7B0.1%7D%20%5D%5Climits%5E%5Cinfty__0%20%7D%29%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ]) } \, dy }) \, dx = 1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%28%5B%5Cfrac%7B-e%5E%7B-0.1%28%5Cinfty%29%7D%20%7D%7B0.1%7D%2B%5Cfrac%7Be%5E%7B-0.1%280%29%7D%20%7D%7B0.1%7D%20%5D%29%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}] } \, dy }) \, dx =1](https://tex.z-dn.net/?f=C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.2y%7D%5B0%2B%5Cfrac%7B1%7D%7B0.1%7D%5D%20%20%7D%20%5C%2C%20dy%20%20%7D%29%20%5C%2C%20dx%20%3D1)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0 }) \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2y%7D%20%7D%7B0.2%7D%5D%5E%5Cinfty__0%20%20%7D%29%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%28%5B%5Cfrac%7B-e%5E%7B-0.2%28%5Cinfty%29%7D%20%7D%7B0.2%7D%2B%5Cfrac%7Be%5E%7B-0.2%280%29%7D%20%7D%7B0.2%7D%5D%20%20%20%7D%20%5C%2C%20dx%20%3D%201)
![10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}] } \, dx = 1](https://tex.z-dn.net/?f=10C%5Cint%5Climits%5E%5Cinfty_0%20%7Be%5E%7B-0.5x%7D%5B0%2B%5Cfrac%7B1%7D%7B0.2%7D%5D%20%20%7D%20%5C%2C%20dx%20%3D%201)
![50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1](https://tex.z-dn.net/?f=50C%28%5B%5Cfrac%7B-e%5E%7B-0.5x%7D%20%7D%7B0.5%7D%5D%5E%5Cinfty__0%7D%29%20%3D%201)
![50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1](https://tex.z-dn.net/?f=50C%5B%5Cfrac%7B-e%5E%7B-0.5%28%5Cinfty%29%7D%20%7D%7B0.5%7D%20%2B%20%5Cfrac%7B-0.5%280%29%7D%7B0.5%7D%5D%20%3D1)
![50C[0+\frac{1}{0.5} ] =1](https://tex.z-dn.net/?f=50C%5B0%2B%5Cfrac%7B1%7D%7B0.5%7D%20%5D%20%3D1)
⇒ 
C = 0.01
Answer:
<u>Option </u><u>D</u> (y = 5/6x -12).
Step-by-step explanation:
Hey there!
The equation of the line which passes through the point (12,-2) is (y+2) = m2(x-12)………(i) [Using one point formula].
According to the question, the first line passes through point (12,6) and (0,-4).
So,



Therefore, the slope of the line is 5/6.
Now as per the condition of parallel lines, m1 =m2 = 5/6.
So, keeping the value of m2 in equation (i), we get;
(y+2) = 5/6(x-12)

or, y = 5/6x - 12.
Therefore, the required equation is y = 5/6 X - 12.
<u>Hope</u><u> </u><u>it </u><u>helps</u><u>!</u>
Equation (B) "y = 3x + 10" represents the growth of the puppy.
<h3>
What are equations?</h3>
- An equation is a mathematical formula where the "equal to" sign appears between two expressions having the same value.
- Like 3x plus 5 equals 15, for example.
- Different types of equations exist, such as linear, quadratic, cubic, and others.
- The three primary forms of linear equations are the slope-intercept form, standard form, and point-slope form.
So, the equation that represents the situation:
- The weight increase is: (10, 13, 16, 19, 22, 25)
- We can observe that every time, there is a rise of 3lbs of weight.
- Now, let 10 be a constant as the weight is starting from 10 lbs.
- And 'x' be the number of time Salomon tracks the weight.
Then:
For example, Salomon checks the weight for the 6th time then:
- y = 3x + 10
- y = 3(5) + 10
- y = 15 + 10
- y = 25
So, the equation is correct.
Therefore, equation (B) "y = 3x + 10" represents the growth of the puppy.
Know more about equations here:
brainly.com/question/28937794
#SPJ13
The correct question is given below:
Salomon tracks the weight of his new puppy every 2 weeks. She weighs 10 lbs the day he brings her home. His list for her first 6 "weighs" is as follows: (10, 13, 16, 19, 22, 25}
Which equation represents the growth of the puppy? Select one:
A. y = x + 3
B. y = 3x + 10
C. y = 10x + 3
D. y = x + 10
Answer:
The correct answer is letter B.
Step-by-step explanation:
Contractionary monetary policies are instruments used by the FED to decrease the amount of money in an economy. There are three classic instruments of monetary policy: open market, rediscount policy and compulsory deposit. The open market is about buying and selling federal government bonds. Thus, by selling bonds, the bank will be increasing the supply of bonds in the economy, on the other hand, is withdrawing dollars, that is, will be withdrawing currency from the economy, resulting in a contractionary monetary policy. Rediscount refers to the interest rate on loans that the FED lends to financial institutions. In situations of illiquidity, banks turn to the FED for loans. In this case, the FED, by increasing the rediscount rate, hindering the supply of money to the institutions and thus exerting a contractionary monetary policy. Finally, bank reserves refer to the part of banks' monetary reserves that are required to be deposited with the FED. Thus, by increasing the percentage of such reserves, the FED is exerting a contractionary fiscal policy, as it decreases the total amount of commercial banks' borrowing resources.