1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
12

Please help me asap!!Will mark brainliest

Mathematics
1 answer:
Elza [17]3 years ago
4 0

Answer:

54

Step-by-step explanation:

You might be interested in
Write a function to represent each situation: (will give brainlest)
tresset_1 [31]

Answer:

Step-by-step explanation:

m = 500 - 10d

4 0
3 years ago
Read 2 more answers
Find the unknown measure of the rectangle.<br> Area =28 square centimeters <br>Height =?
taurus [48]
Area of rectangle = Length*width
A = 28  so 28 = 4 * height
height  = 28/4 = 7
6 0
3 years ago
Read 2 more answers
Setting:
nata0808 [166]
A. Mr. Kent interviewed the 54 students as they are going to leave the school, it is not considered to be a random sample. It is because a random sample is when a set is taken from a population. Mr. Kent interviewed the 54 who are going to leave, meaning, he didn't take a set out of that 54, he took all of them. So it is not a random sample.

b. The question that Mr. Kent asked is considered to be a leading question, so it does not seem biased.

c. If there are 54 respondents.
51 = yes, the rest is no.
= 54 - 51 = 3
= 3 is now divided to 54 = 3/54
= giving an answer of 0.0555
= 0.0555 x 100
= 5.6%
= The percent of responses that says 'no' is 5.6%

6 0
3 years ago
Read 2 more answers
A repeating decimal + A fraction
AysviL [449]

Answer:

3.33333333333+1/3=3.6666666666666666

7 0
3 years ago
Read 2 more answers
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Other questions:
  • What does this describe? Pays a higher interest rate than a savings account
    13·2 answers
  • What is the rate of change of the function represented by the table
    13·2 answers
  • R+5=3r+7 solve each equation. Combine like terms
    15·1 answer
  • Determine if the graph of y=x/x^2-4 is symmetrical with respect to the x-axis, the y-axis, or the origin.
    15·1 answer
  • The yearly cost in dollars, y, at a video game arcade based on total game tokens purchased, x, is y = x + 60 for a member and y
    9·1 answer
  • At 12:45 Jimmy left his home in Pinetrees and cycled to visit his grandmother in Oakville. On his
    7·1 answer
  • Use the following function rule to find f(-7).<br> f(x) = 9x - 7<br> O 70<br> O-56<br> 0 -70<br> 56
    7·1 answer
  • Four more than the quotient of a number and 5 is 8
    9·1 answer
  • Find the distance between (3, -3) and (2, 7). Round to the nearest hundredth if necessary. * 10 points
    6·1 answer
  • -2x+9y=-41<br> -2x-5y=1<br><br> Process of elimination
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!