Answer: Options are not given, here are the options.
a.Thylakoid membranes become more permeable to ions
b.The chlorophyll breaks down
c.The peripheral proteins lose their ability to bind to the transmembrane proteins
d.Water cannot bind to PSII to form oxygen
The correct option is C.
The peripheral proteins lose their ability to bind to the transmembrane proteins.
Explanation:
In photosystem 11, it is the center where light is converted to moving electrons. When the chlorophyll molecule absorb light, the electrons gain energy.
Increase temperature affects the activity of photosystem 11 because the peripheral protein lose their ability to bind to the transmembrane protein which is as a result of high temperature affecting the surface of ionic interactions which is for binding to transmembrane protein.
We have polluted it— the air, water and the ground.
Some people have tried to clean up the environment
Answer:
Carbon can bond with many elements
Explanation:
Carbon can bond with many elements, including itself, to form macromolecules. Moreover, it can form four bonds, and that makes possible many different arrangements of the atoms in the molecules.
A is <em>wron</em>g. Carbon is among the seven smallest elements in the Periodic Table.
C is <em>wrong</em>. Carbon is found in living things because it can form macromolecules, not the other way around.
D is <em>wrong</em>. Carbon can bond with many other elements beside itself.
Answer:
Selection is a directional process that leads to an increase or a decrease in the frequency of genes or genotypes. Selection is the process that increases the frequencies of plant resistance alleles in natural ecosystems through coevolution, and it is the process that increases the frequencies of virulence alleles in agricultural ecosystems during boom and bust cycles.
Selection occurs in response to a specific environmental factor. It is a central topic of population and evolutionary biology. The consequence of natural selection on the genetic structure and evolution of organisms is complicated. Natural selection can decrease the genetic variation in populations of organisms by selecting for or against a specific gene or gene combination (leading to directional selection). It can increase the genetic variation in populations by selecting for or against several genes or gene combinations (leading to disruptive selection or balancing selection). Natural selection might lead to speciation through the accumulation of adaptive genetic differences among reproductively isolated populations. Selection can also prevent speciation by homogenizing the population genetic structure across all locations.
Selection in plant pathology is mainly considered in the framework of gene-for-gene coevolution. Plant pathologists often think in terms of Van der Plank and his concept of "stabilizing selection" that would operate against pathogen strains with unnecessary virulence. As we will see shortly, Van der Plank used the wrong term, as he was actually referring to directional selection against unneeded virulence alleles.
There isnt any choices but i know that the answer is Uracil (it's found in RNA)