Given:
The coordinates of point A are (7,4).
It is dilated from the origin by a scale factor r = 3.
To find:
The coordinates of A'.
Solution:
If a figure is dilated from the origin by a scale factor k, then
Here, the figure is dilated from the origin by a scale factor 3, so the rule of dilation is given by:
Using this rule, we get
Therefore, the coordinates of point A' are (21,12).
Answer:
-3/4
Step-by-step explanation:
Let x represent the side length of the square end, and let d represent the dimension that is the sum of length and girth. Then the volume V is given by
V = x²(d -4x)
Volume will be maximized when the derivative of V is zero.
dV/dx = 0 = -12x² +2dx
0 = -2x(6x -d)
This has solutions
x = 0, x = d/6
a) The largest possible volume is
(d/6)²(d -4d/6) = 2(d/6)³
= 2(108 in/6)³ = 11,664 in³
b) The dimensions of the package with largest volume are
d/6 = 18 inches square by
d -4d/6 = d/3 = 36 inches long
X²/9 + y²/16 = 1
The general for mula of an ellipse is:
(x-h)²/a² + (y-k)²/b² = 1. Since h = k = 0, this ellipse
x²/9 + y²/16 = 1
passes by the center O. (Note that a = 3 and b = 4)
Moreover sin b>a so the majore axis is (on the y-axis) and a the minor axis (on the x-axis) [Its shape is as a vertical egg].
On a system of perpendicular axis that intercept in O., take on the x-axis 2 points A & B with respective coordinate A(3.0) and B(-3,0)
On the y-axis your report A'(0,+4) and B'(0,-4). So you have the vertex of the ellipse, then it's easy to draw it
Step-by-step explanation:
<em>Hi</em><em> </em><em>there</em><em>!</em><em>!</em><em>!</em><em> </em>
<em>The</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>option A</em><em>. </em>
<em>reason</em><em> </em><em>look</em><em> </em><em>in</em><em> </em><em>picture</em><em>.</em><em> </em>
<em>if</em><em> </em><em>you</em><em> </em><em>want</em><em> </em><em>to</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>just</em><em> </em><em>cross</em><em> </em><em>multiply</em><em> </em><em>it</em><em>,</em>
<em></em>
<em>or</em><em>,</em>
<em></em>
<em>and</em><em> </em><em>the</em><em> </em><em>answer</em><em> </em><em>would</em><em> </em><em>be</em><em> </em><em>4</em><em>0</em><em>0</em><em>0</em><em>0</em><em>0</em><em>.</em>
<em>Hope</em><em> </em><em>it helps</em><em>.</em><em>.</em><em>.</em>