Answer with explanation:
A salesperson can use probability to get an idea of his business as using probability he can estimate his sale of the next month as well, based on the present and previous months sales.
It can help him sort issues or errors he is facing in his business as he will get a complete idea of his business using probability.
Moreover, he can forecast future sales by using a technique which involves assigning percentages or weighting benchmarks in sales cycle, so that he can estimate the expected revenue generated.
For example:
A supermarket sales person can assign probabilities to benchmarks in sale cycle as providing needs analysis (25 % probability), adding new product (50%Probability) , Remove a product ( 75 % probability), closing sale (100% Probability) . If these probabilities are large, then forecast model can be objective.
_____________________________________________________
So just like that by assigning probabilities to benchmarks, a sales person can forecast future sales
Answer:
The answer could be A
Step-by-step explanation:
Got this from another Brainly user
60-3d + 20-6 =4d
74-3d =4d
-3d =4d -74
-7d = -74
D=74/7
Answer: 3^15
Step-by-step explanation: carry the one to the 5 divide by the third and multiply the fractions , find the mean ( average ) of the mode and square that to find your a b and c values
Answer:
a. Function 1
b. Function 3
c. Function 2, Function 3 and Function 4
Step-by-step explanation:
✔️Function 1:
y-intercept = -3 (the point where the line cuts across the y-axis)
Slope, using the two points (0, -3) and (1, 2):

Slope = 5
✔️Function 2:
y-intercept = -1 (the value of y when x = 0)
Slope, using the two points (0, -1) and (1, -4):

Slope = -3
✔️Function 3: y = 2x + 5
y-intercept (b) = 5
Slope (m) = 2
✔️Function 4:
y-intercept = 2
Slope = -1
Thus, the following conclusions can be made:
a. The function's graph that is steepest is the function whose absolute value of its slope is greater. Therefore Function 1 is the steepest with slope of 5
b. Function 3 has a y-intercept of 5, which is the farthest from 0.
c. Function 2, Function 3, and Function 4 all have y-intercept that is greater than -2.
-1, 5, and 2 are all greater than -2.