Answer:
Correct integral, third graph
Step-by-step explanation:
Assuming that your answer was 'tan³(θ)/3 + C,' you have the right integral. We would have to solve for the integral using u-substitution. Let's start.
Given : ∫ tan²(θ)sec²(θ)dθ
Applying u-substitution : u = tan(θ),
=> ∫ u²du
Apply the power rule ' ∫ xᵃdx = x^(a+1)/a+1 ' : u^(2+1)/ 2+1
Substitute back u = tan(θ) : tan^2+1(θ)/2+1
Simplify : 1/3tan³(θ)
Hence the integral ' ∫ tan²(θ)sec²(θ)dθ ' = ' 1/3tan³(θ). ' Your solution was rewritten in a different format, but it was the same answer. Now let's move on to the graphing portion. The attachment represents F(θ). f(θ) is an upward facing parabola, so your graph will be the third one.
Please excuse my sloppy writing but the answer is 30
Answer:
70
Step-by-step explanation:
Answer:
Explain what you mean please :)?
Step-by-step explanation:
Answer:
x = 3.5
Step-by-step explanation:
Triangle to the right:
4^2 + x^2 = 8^2
16 + x^2 = 64
y^2 = 48
Triangle to the left:
x^2 + 6^2 = 48
x^2 + 36 = 48
x^2 = 12
x = sqrt(12)
x = 3.5