We want to find the values of a, b, c, and d such that the given matrix product is equal to a 2x2 identity matrix. We will solve a system of equations to find:
<h3>
Presenting the equation:</h3>
Basically, we want to solve:
![\left[\begin{array}{cc}-1&2\\a&1\end{array}\right]*\left[\begin{array}{cc}b&c\\1&d\end{array}\right] = \left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5Ca%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db%26c%5C%5C1%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
The matrix product will be:
![\left[\begin{array}{cc}-b + 2&-c + 2d\\a*b + 1&a*c + d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-b%20%2B%202%26-c%20%2B%202d%5C%5Ca%2Ab%20%2B%201%26a%2Ac%20%2B%20d%5Cend%7Barray%7D%5Cright%5D)
Then we must have:
-b + 2 = 1
This means that:
b = 2 - 1 = 1
We also need to have:
a*b + 1 = 0
we know the value of b, so we just have:
a*1 + b = 0
Now the two remaining equations are:
-c + 2d = 0
a*c + d = 1
Replacing the value of a we get:
-c + 2d = 0
-c + d = 1
Isolating c in the first equation we get:
c = 2d
Replacing that in the other equation we get:
-(2d) + d = 1
-d = 1
Then:
c = 2d = 2*(-1) = -2
So the values are:
If you want to learn more about systems of equations, you can read:
brainly.com/question/13729904
Answer:
Row 1 -
1/3, 1/2, 1/3, 2/3, 2/3, 8/15, 1/2.
Row 2 -
3/4, 3/4, 2/7, 21/25, 5/6, 7/9, 1/3.
Row 3 -
3/20, 7/20, 3/25, 3/5, 3/5, 1, 3/2 OR 1 1/2.
Hope this helped you out.
First let's find the length of the last side. We can do this by adding AB and BC together, then subtracting this amount from the perimeter of Triangle ABC, 22 cm.
ABC - (AB + BC) ⇒ 22cm - (8cm + 5cm)
22cm - 13cm = 9cm
The hypotenuse is always the longest side of a triangle, so we know that the side we figured out is the hypotenuse. Now we can use the Pythagorean Theorem to see whether the triangle is a right triangle.
Pythagorean Theorem: a² + b² = c², where a and b are legs and c is the hypotenuse.
If a² + b² do equal c², then the triangle is a right triangle.
8² + 5² = 9²
64 + 25 = 81
89 > 81
The triangle is not a right triangle, but we know that it is obtuse since a and b together are longer than c.
CAD= BAD
AD=AD( the same side of two angles).