1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina [24]
4 years ago
11

Among 8 PS4s, four are good and four have defects. Unaware of this, a customer buys 5 PS4s.

Mathematics
2 answers:
tangare [24]4 years ago
7 0

just buy one ps4 it is $299

astraxan [27]4 years ago
6 0

Answer:

(a) The probability of exactly 2 defective PS4s among them is 0.3125.

(b) The probability that exactly ​ 2 are defective given that  ​at least ​ 2 purchased PS4s are defective is 0.3846.

Step-by-step explanation:

Let <em>X</em> = number of defective PS4s.

It is provided that 4 PS4s of 8 are defective.

The probability of selecting a defective PS4 is:

P(X)=p=\frac{4}{8}=0.50

A customer bought <em>n</em> = 5 PS4s.

The random variable <em>X</em> follows a Binomial distribution with parameters <em>n</em> = 5 and <em>p</em> = 0.50.

The probability function of a Binomial distribution is:

P(X=x)={n\choose x}p^{x}(1-p)^{n-x};\ x=0, 1, 2, 3...

(a)

Compute the probability of exactly 2 defective PS4s among them as follows:

P(X=2)={5\choose 2}(0.50)^{2}(1-0.50)^{5-2}=10\times0.25\times0.125=0.3125

Thus, the probability of exactly 2 defective PS4s among them is 0.3125.

(b)

Compute the probability that exactly ​ 2 are defective given that  ​at least ​ 2 purchased PS4s are defective as follows:

P(X=2|X\geq 2)=\frac{P(X=2\cap X\geq2)}{P(X\geq2)} =\frac{P(X=2)}{P(X\geq 2)}

The value of P (X = 2) is 0.3125.

The value of P (X ≥ 2) is:

P(X\geq 2)=1-P(X

Then the value of P (X = 2 | X ≥ 2) is:

P(X=2|X\geq 2)=\frac{P(X=2)}{P(X\geq 2)}=\frac{0.3125}{0.8125} =0.3846

Thus, the probability that exactly ​ 2 are defective given that  ​at least ​ 2 purchased PS4s are defective is 0.3846.

You might be interested in
2•2•2•2•2•3•3•3•3 in exponential form.
pentagon [3]

Answer:

2^5 and 3^4

Step-by-step explanation:

you can see there are 5 2's and 4 3's. so it would be 2^5 and 3^4

8 0
4 years ago
Read 2 more answers
Match the term with the definition
katrin2010 [14]

Answer:

Plane: C) A flat surface that extends infinitively and has no depth; it has length and width

Perpendicular Lines: B) Two lines that intersect at 90° angles

Parallel Lines: E) Two lines that lie within the same plane and never intersect

Circle: D) A set of all points in a plane that are given distance from a plane

Angle: A) A figure consisting of two rays with a common endpoint

I hope this helps

this is 100% correct

plz mark me brainliest

3 0
3 years ago
Pleaseeee helpppp it’s due in 6 minutes helpp!! Explain
artcher [175]

Answer:

I might be wrong but since ur in a rush: 173

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Line segment GT contains the point G(−3, 5) and a midpoint at A(1, −4). What is the location of endpoint T?
algol [13]

Imagine you're moving along the segment. Since the midpoint is in the middle of the segment (obviously), it means that when you've traveled from G to A, you're halfway through your journey, along both x and y directions. So, let's break the problem in two and analyze both directions.


Along the x axis, you've moved from -3 to 1, so you moved 4 units forward. This means that you have 4 units still to go, and your journey will end at coordinate 5.


Similarly, along the y axis, you've moved from 5 to -4, so you moved 9 units downward. This means that you have 9 units still to go, and your journey will end at coordinate -13.


So, the coordinates of the endpoint are T = (5,-13)


If you prefer a more analyitical approach, simply write the definition of the midpoint and solve it for the coordinates of T.


We have G = (-3, 5) and T = (x_T,y_T). The midpoint is computed as


A = \left( \frac{-3+x_T}{2},\frac{5+y_T}{2} \right) = (1, -4)


So, you have the equations


\frac{-3+x_T}{2} = 1,\qquad \frac{5+y_T}{2} = -4


Multply both equations by 2 to get


-3+x_T = 2,\qquad 5+y_T = -8


Move the constants to the right hand sides to get


x_T = 5,\qquad y_T = -13

8 0
3 years ago
7th grade math help me please
Vlada [557]

Answer:

what do you need help with?

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Given that f(x)=3x+1 and g(x)=4x+2/4, solve for g(f(0))
    10·1 answer
  • When Asher looks at the data he says that both Mrs. Jamison's class and Mr. Zimmerman's class has data that is skewed right. Do
    7·1 answer
  • In the triangle below what ratio is cot G
    12·1 answer
  • 38%of what number is 57
    9·2 answers
  • OU
    6·1 answer
  • What is the value of 2 + b(a? + 4) when a = 2 and b = 4?<br> A 22<br> B 34<br> C 2<br> D 48
    15·1 answer
  • Sorry can someone help please…
    11·1 answer
  • Lexi Chappell
    5·1 answer
  • Which of the following is an example of a false negative?
    5·2 answers
  • The revenue from selling x necklaces is r(x) =10x. The cost of buying x necklaces is c(x)=4x+15. The profit from selling x neckl
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!