After the translation , the coordinates of vertex C are ( 5 , -1 )
<h3>Further explanation</h3>
<em>There are several types of transformations:</em>
- <em>Translation</em>
- <em>Reflection</em>
- <em>Rotation</em>
- <em>Dilation</em>
Let us now tackle the problem!
This problem is about Translation.
<em>The triangle is translated 4 units down and 3 units left.</em>
<em>The rule that represents the translation will be </em>![\left[\begin{array}{ccc}-3\\-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C-4%5Cend%7Barray%7D%5Cright%5D)
Let's find the translation for every vertice of Triangle ABC:
A(-3 , 4) → A'(-3 + (-3) , 4 + (-4)) = A'(-6 , 0)
B(4 , -2) → B'(4 + (-3) , -2 + (-4)) = B'(1 , -6)
C(8 , 3) → C'(8 + (-3) , 3 + (-4)) = C'(5 , -1)
From the results above, we can illustrate the translation process as shown in the attached picture
<h2>Conclusion:</h2>
<em>After the translation , the coordinates of vertex C are </em><em>( 5 , -1 )</em>
<h3>Learn more</h3>
<h3>Answer details</h3>
Grade: High School
Subject: Mathematics
Chapter: Function
Keywords: Function , Trigonometric , Linear , Quadratic , Translation , Reflection , Rotation , Dilation , Graph , Vertex , Vertices , Triangle