Answer:
0.304 m/s2
Explanation:
If the first child is pushing with a force of 69N to the right and the 2nd child is pushing with a force of 91N to the left. Then the net pushing force is 91 - 69 = 22 N to the left. Subtracted by 15N friction force then the system of interest is subjected to F = 7 N net force tot he left.
We can use Newton's 2nd law to calculate the net acceleration of the system

Answer:
<h2>
<em>Distance</em></h2>
<em>The </em><em>length</em><em> </em><em>of </em><em>the </em><em>actual </em><em>path </em><em>travelled by </em><em>a </em><em>body </em><em>is </em><em>called </em><em>distance </em><em>travelled </em><em>by </em><em>a </em><em>body.It </em><em>is </em><em>a </em><em>scalar </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em>
<h2>
<em>Displacement</em></h2>
<em>The </em><em>shortest </em><em>distance</em><em> </em><em>from </em><em>initial </em><em>position</em><em> </em><em>to </em><em>the </em><em>final </em><em>position</em><em> </em><em>of </em><em>a </em><em>body </em><em>is </em><em>called </em><em>displacement</em><em> </em><em>of </em><em>the </em><em>body.It </em><em>is </em><em>a </em><em>vector</em><em> </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em><em>.</em>
<em>Please </em><em>see </em><em>the </em><em>attached </em><em>picture.</em><em>.</em><em>.</em>
<em>It </em><em>is </em><em>the </em><em>example </em><em>of </em><em>distance </em><em>and </em><em>displacement.</em><em>.</em><em>.</em><em>.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>
Answer:

Explanation:
Given that,
Radius of the circular loop, r = 10 cm = 0.1 m
Current flowing in the loop, I = 3.6 A
Uniform magnetic field, B = 12 T
To find,
The magnetic dipole moment of the loop.
Solution,
Let M is the magnitude of magnetic dipole moment of the loop. We know that the product of current flowing and the area of cross section. Its formula is given by :

A is the area of circular wire



Therefore, the magnetic dipole moment of the loop is
. Hence, this is the required solution.
Answer:
8.2 m/s²
Explanation:
m = mass of the block
μ = Coefficient of kinetic friction = 0.17
= Normal force on the block by the ramp
= kinetic frictional force
Force equation perpendicular to ramp surface is given as

Kinetic frictional force is given as


Force equation parallel to ramp surface is given as




m/s²
A. Balloons can be filled with air.
C. Air has mass.