Answer:
I need this for may schooling
Answer:
Before sled starts to move it has a potential energy due to the elevation...and then that potential energy converted to kinetic energy due to presence of a velocity...the sled will continue to move if their is no resesive force...but however friction force is presence that cause the sled to stop....
To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
Answer:
2856.96 J
0
0

6.78822 m/s
Explanation:
= Initial velocity = 9.6 m/s
g = Acceleration due to gravity = 9.81 m/s²
h = Height
The athlete only interacts with the gravitational potential energy. Air resistance is neglected.
At height y = 0
Kinetic energy

At height y = 0 the potential energy is 0 as

At maximum height her velocity becomes 0 so the kinetic energy becomes zero.
As the the potential and kinetic energy are conserved
The general equation

Half of maximum height



The velocity of the athlete at half the maximum height is 6.78822 m/s
Answer: Normal Force of the ground pushing the athlete up.
Explanation: I did this on Khan Academy and got the answer right.