Answer:
P = 180.81 J
Explanation:
Given that,
Mass of a object, m = 4.1 kg
It is lifted to a height of 4.5 m
We need to find the potential energy of the object due to gravity. It is given by the formula as follows :
P = mgh Where g is acceleration due to gravity
P = 4.1 kg × 9.8 m/s² × 4.5 m
P = 180.81 J
Hence, the potential energy is 180.81 J.
Answer:
27.44 J
Explanation:
We can find the energy at the top of the slide by using the potential energy equation:
At the top of the slide, the swimmer has 0 kinetic energy and maximum potential energy.
The swimmer's mass is given as 7.00 kg.
The acceleration due to gravity is 9.8 m/s².
The (vertical) height of the water slide is 0.40 m.
Substitute these values into the potential energy equation:
- PE = (7.00)(9.8)(0.40)
- PE = 27.44
Since there is 0 kinetic energy at the top of the slide, the total energy present is the swimmer's potential energy.
Therefore, the answer is 27.44 J of energy when the swimmer is at the top of the slide.
<u>Answer:</u> The correct answer is two electrons are shared between each hydrogen atom and the carbon atom bonded to it, and four electrons are shared between the carbon atoms.
<u>Explanation:</u>
Ethylene is a compound given by the chemical formula
.
The bond present between hydrogen and carbon atoms or carbon and carbon atoms are covalent bonds. A covalent bond is formed by the sharing of electrons between the atoms combining.
A double bond is present between carbon and carbon atoms. So 2 pairs of electrons are shared which means in total of 4 electrons are shared.
Bond present between hydrogen and carbon atoms are single bonds. So, a pair of electrons is shared which means that in total of 2 electrons are shared.
Hence, the correct answer is two electrons are shared between each hydrogen atom and the carbon atom bonded to it, and four electrons are shared between the carbon atoms.
There are two main types of electrical charges.
Answer:
240 Joules
Explanation:
work = f x d
16 newtons is the force
15 meters is the distance
15*16= 240