A chemoorganotroph and a chemolithotroph in the same environment would not compete for - carbon
A chemoorganotroph is an organism that gets its energy from oxidation of reduced organic compounds. A chemolithotroph is someone who is able to use inorganic reduced compounds as a source of their energy. This process is accomplished through oxidation and ATP synthesis.
Answer:
The autonomic nervous system is the main neural regulator of circulation and blood pressure in the short term and beat by beat and exerts its function through various reflexes that regulate vasomotor tone, heart rate and cardiac output. At the renal level, the renin–angiotensin–aldosterone system is possibly the most important in the maintenance of arterial homeostasis.
Explanation:
Blood pressure is regulated by a series of interrelated autonomic systems and humoral reflexes, which continually adjust the determining elements of the system (heart rate, stroke volume, total peripheral resistance and circulating volume).The effective circulating volume is controlled by a series of reflex systems, which obtain information about the perfusion pressure (baroreceptors in the carotid bulb and aortic arch), plasma osmolarity (hypothalamus) and urinary sodium (distal tubule).The kidney has its own self-regulatory mechanisms. The reduction in renal blood flow is detected at the level of the mesangial cells of the juxtaglomerular apparatus, starting the renin-angiotensin system. The increase in angiotensin II produces on the one hand local vasoconstriction, and on the other hand stimulates the production of aldosterone by the adrenal cortex with the consequent tubular reabsorption of sodium and water.Antidiuretic hormone or vasopressin (released from the hypothalamus by stimulation of arterial baroreceptors and also by stimulation of angiotensin II) also acts at the renal level, which acts as a powerful and water-saving vasoconstrictor in the distal tubule.
temperature regulation, heat absorption, and nutrition transportation
Answer:
F1 Females - all wild type
F1 Males - all wild type
F2 Females - - all wild type
F2 Males - 1/2 wild type, 1/2 vermilion
Explanation:
The wild-type allele (Xᵛ⁺) is dominant over vermilion (Xᵛ), which is a sex-linked trait.
Female flies have two X chromosomes, male flies have one X and one Y chromosome.
A homozygous wild-type female fly (Xᵛ⁺Xᵛ⁺) is mated with a vermilion male fly (XᵛY).
The female parent can only produce Xᵛ⁺ gametes.
The male parent can produce either Xᵛ or Y gametes.
When gametes from both parents fuse, the F1 offspring will have the genotypes Xᵛ⁺Xᵛ (females with wild type eyes) and Xᵛ⁺Y (males with wild type eyes).
The F1 females can produce Xᵛ⁺ and Xᵛ gametes. The F1 males can produce Xᵛ⁺ and Y gametes.
When the F1 individuals interbreed, the gametes combine to give rise to the F2 offspring. The possible combination of gametes that will give the different genotypes and phenotypes in the F2 are:
- Xᵛ⁺Xᵛ⁺ females with wild type eyes
- Xᵛ⁺ Y males with wild type eyes
- Xᵛ Xᵛ⁺ females with wild type eyes
- Xᵛ Y males with vermilion eyes