m ∠b = 133°, m ∠c = 47°, and m ∠d = 133°.
<h3>
Further explanation</h3>
Follow the attached picture. I sincerely hope that's precisely a correct illustration.
We will use a graph of two intersecting straight lines.
Note that m ∠a and m ∠c are vertical angles. Since vertical angles share the same measures, in other words always congruent, we see 
We continue to determine m ∠b and m ∠d.
Note that m ∠b and m ∠d represent supplementary angles. Recall that supplementary angles add up to 180°.
Let us see the following steps.


Both sides subtracted by 47°.

Thus 
Finally, note that m ∠b and m ∠d are vertical angles. Accordingly, 
<u>Conclusion:</u>
- m ∠a = 47°
- m ∠b = 133°
- m ∠c = 47°
- m ∠d = 133°
<u>Notes:</u>
- Supplementary angles are two angles when they add up to 180°.

- Vertical angles are the angles opposite each other when two lines cross. Note that vertical angles are always congruent, or of equal measure.

<h3>Learn more</h3>
- About the measure of the central angle brainly.com/question/2115496
- Undefined terms needed to define angles brainly.com/question/3717797
- Find out the measures of the two angles in a right triangle brainly.com/question/4302397
Keywords: m∠a = 47°, m∠b, m∠c, and m∠d, 133°, vertical angles, supplementary, 180°, congruent
Answer:
Point F is at -3
Step-by-step explanation:
To get the value of DK we use proportionality:
AK/EK=BK/KD
thus plugging the values we get:
14/17=7/KD
getting the reciprocal of getting both sides we have:
17/14=KD/7
thus
KD=17/14×7
KD=8.5
thus
For this case, the first thing we must do is define variables:
x: unknown number (1)
y: unknown number (2)
We now write the equations that model the problem:
their sum is 6.1:

their difference is 1.6:

Solving the system we have:
We add both equations:

Then, we look for the value of y using any of the equations:
Answer:
The numbers are:
Answer:
D) None of the above
Step-by-step explanation:
These are no supplementary or complimentary because they do not add up to 180 and to be vertical they would have to be across from each other